Медицина

jbbjjkjk

р-элементы VIIА группы. Галогены
 р-элементы V
IIIА группы. Благородные газы

Галоге́ны (от греч. ἁλός — соль и γένος — рождение, происхождение; иногда употребляется устаревшее название гало́иды) — химические элементы 17-й группы периодической таблицы химических элементов Д.И. Менделеева (по устаревшей классификации — элементы главной подгруппы VII группы).

Реагируют почти со всеми простыми веществами, кроме некоторых неметаллов. Все галогены — энергичные окислители, поэтому встречаются в природе только в виде соединений. С увеличением порядкового номера химическая активность галогенов уменьшается, химическая активность галогенид-ионов F−, Cl−, Br−, I−, At− уменьшается.

К галогенам относятся фтор F, хлор Cl, бром Br, иод I, астат At, а также (формально) искусственный элемент унунсептий Uus.

Все галогены — неметаллы. На внешнем энергетическом уровне 7 электронов, являются сильными окислителями. При взаимодействии с металлами возникает ионная связь, и образуются соли. Галогены, (кроме F) при взаимодействии с более электроотрицательными элементами, могут проявлять и восстановительные свойства вплоть до высшей степени окисления +7.

Распространённость элементов и получение простых веществ

Как уже было сказано выше, галогены имеют высокую реакционную способность, поэтому встречаются в природе обычно в виде соединений.

Их распространённость в земной коре уменьшается при увеличении атомного радиуса от фтора к иоду. Количество астата в земной коре измеряется граммами, а унунсептий в природе отсутствует. Фтор, хлор, бром и иод производятся в промышленных масштабах, причем хлор производится в гораздо больших количествах.

В природе эти элементы встречаются в основном в виде галогенидов (за исключением иода, который также встречается в виде иодата натрия или калия в месторождениях нитратов щелочных металлов). Поскольку многие хлориды, бромиды и иодиды растворимы в воде, то эти анионы присутствуют в океане и природных рассолах. Основным источником фтора является фторид кальция, который очень малорастворим и находится в осадочных породах (как флюорит CaF2).

Основным способом получения простых веществ является окисление галогенидов. Высокие положительные стандартные электродные потенциалы Eo(F2/F−) = +2,87 В и Eo(Cl2/Cl−) = +1,36 В показывают, что окислить ионы F− и Cl− можно только сильными окислителями. В промышленности применяется только электролитическое окисление. При получении фтора нельзя использовать водный раствор, поскольку вода окисляется при значительно более низком потенциале (+1,32 В) и образующийся фтор стал бы быстро реагировать с водой. Впервые фтор был получен в 1886 г. французским химиком Анри Муассаном при электролизе раствора гидрофторида калия KHF2 в безводной плавиковой кислоте.

В промышленности хлор в основном получают электролизом водного раствора хлорида натрия в специальных электролизёрах.

Фтор является трудносжижаемым, а хлор легкосжижаемым газом с удушливым резким запахом. Энергия связи галогенов сверху вниз по ряду изменяется не равномерно. Фтор имеет аномально низкую энергию связи (151 кДж/моль), это объясняется тем, что фтор не имеет d-подуровня и не способен образовывать полуторные связи, в отличие от остальных галогенов (Cl2 243, Br2 199, I2 150,7, At2 117 кДж/моль). От хлора к астату энергия связи постепенно ослабевает, что связано с увеличением атомного радиуса. Аналогичные аномалии имеют и температуры кипения (плавления):Простое вещество         Температура плавления, °C Температура кипения, °C

F2     −220 −188

Cl2    −101 −34

Br2   −7     58

I2      113,5 184,885

At2   244   309

 

Химические свойства галогенов

Все галогены проявляют высокую окислительную активность, которая уменьшается при переходе от фтора к астату. Фтор — самый активный из галогенов, реагирует со всеми металлами без исключения, многие из них в атмосфере фтора самовоспламеняются, выделяя большое количество теплоты, например:

2Al + 3F2 = 2AlF3 + 2989 кДж,

2Fe + 3F2 = 2FeF3 + 1974 кДж.

Без нагревания фтор реагирует и со многими неметаллами (H2, S, С, Si, Р) — все реакции при этом сильно экзотермические, например:

Н2 + F2 = 2HF + 547 кДж,

Si + 2F2 = SiF4(г) + 1615 кДж.

При нагревании фтор окисляет все другие галогены по схеме

Hal2 + F2 = 2НalF

где Hal = Cl, Br, I, At, причем в соединениях HalF степени окисления хлора, брома, иода и астата равны +1.

Наконец, при облучении фтор реагирует даже с инертными (благородными) газами:

Хе + F2 = XeF2 + 152 кДж.

Взаимодействие фтора со сложными веществами также протекает очень энергично. Так, он окисляет воду, при этом реакция носит взрывной характер:

3F2 + ЗН2О = OF2↑ + 4HF + Н2О2.

Свободный хлор также очень реакционноспособен, хотя его активность и меньше, чем у фтора. Он непосредственно реагирует со всеми простыми веществами, за исключением кислорода, азота и благородных газов. Для сравнения приведем уравнения реакций хлора с теми же простыми веществами, что и для фтора:

2Al + 3Cl2 = 2AlCl3(кр) + 1405 кДж,

2Fe + ЗCl2 = 2FeCl3(кр) + 804 кДж,

Si + 2Cl2 = SiCl4(Ж) + 662 кДж,

Н2 + Cl2 = 2HCl(г)+185кДж.

Особый интерес представляет реакция с водородом. Так, при комнатной температуре, без освещения хлор практически не реагирует с водородом, тогда как при нагревании или при освещении (например, на прямом солнечном свету) эта реакция протекает со взрывом по приведенному ниже цепному механизму:

Cl2 + hν → 2Cl,

Cl + Н2 → HCl + Н,

Н + Cl2 → HCl + Cl,

Cl + Н2 → HCl + Н и т. д.

Возбуждение этой реакции происходит под действием фотонов (hν), которые вызывают диссоциацию молекул Cl2 на атомы — при этом возникает цепь последовательных реакций, в каждой из которых появляется частица, инициирующая начало последующей стадии.

Реакция между Н2 и Cl2 послужила одним из первых объектов исследования цепных фотохимических реакций. Наибольший вклад в развитие представлений о цепных реакциях внёс русский учёный, лауреат Нобелевской премии (1956 год) Н. Н. Семёнов.

Хлор вступает в реакцию со многими сложными веществами, например замещения и присоединения с углеводородами:

СН3-СН3 + Cl2 → СН3-СН2Cl + HCl,

СН2=СН2 + Cl2 → СН2Cl — СН2Cl.

Хлор способен при нагревании вытеснять бром или иод из их соединений с водородом или металлами:

Cl2 + 2HBr = 2HCl + Br2,

Cl2 + 2HI = 2HCl + I2,

Cl2 + 2KBr = 2KCl + Br2,

а также обратимо реагирует с водой:

Cl2 + Н2О = HCl + HClO — 25 кДж.

Хлор, растворяясь в воде и частично реагируя с ней, как это показано выше, образует равновесную смесь веществ, называемую хлорной водой.

Заметим также, что хлор в левой части последнего уравнения имеет степень окисления 0. В результате реакции у одних атомов хлора степень окисления стала −1 (в HCl), у других +1 (в хлорноватистой кислоте HOCl). Такая реакция — пример реакции самоокисления-самовосстановления, или диспропорционирования.

Хлор может таким же образом реагировать (диспропорционировать) со щелочами:

Cl2 + 2NaOH = NaCl + NaClO + Н2О (на холоде),

3Cl2 + 6КОН = 5KCl + KClO3 + 3Н2О (при нагревании).

Химическая активность брома меньше, чем у фтора и хлора, но все же достаточно велика в связи с тем, что бром обычно ис­пользуют в жидком состоянии и поэтому его исходные концентрации при прочих равных условиях больше, чем у хлора.

Для примера приведем реакции взаимодействия брома с кремнием и водородом:

Si + 2Br2 = SiBr4(ж) + 433 кДж,

Н2 + Br2 = 2HBr(г) + 73 кДж.

Являясь более «мягким» реагентом, бром находит широкое применение в органической химии.

Отметим, что бром, так же, как и хлор, растворяется в воде, и, частично реагируя с ней, образует так называемую «бромную воду», тогда как иод практически в воде не растворим и не способен её окислять даже при нагревании; по этой причине не существует «иодной воды». Но иод способен растворяться в растворах иодидов с образованием комплексных анионов:

I2 + I− → I−3.

Образующийся раствор называется раствором Люголя.

Иод существенно отличается по химической активности от остальных галогенов. Он не реагирует с большинством неметаллов, а с металлами медленно реагирует только при нагревании. Взаимодействие же иода с водородом происходит только при сильном нагревании, реакция является эндотермической и сильно обратимой:

Н2 + I2 = 2HI — 53 кДж.

Таким образом, химическая активность галогенов последовательно уменьшается от фтора к астату. Каждый галоген в ряду F — At может вытеснять последующий из его соединений с водородом или металлами, то есть каждый галоген в виде простого вещества способен окислять галогенид-ион любого из последующих галогенов. Астат ещё менее реакционноспособен, чем иод. Но и он реагирует с металлами (например с литием):

2Li + At2 = 2LiAt — астатид лития.

А при диссоциации образуются не только протоны, но и ионы At+:HAt диссоц. на:2HAt=H++At-+H-+At+.

Фтор

 Как и прочие галоиды, фтор встречается на земной поверхности исключительно в виде солей. Общее его содержание в земной коре составляет 0,02%. Основная масса фтора распылена по различным горным породам. Из отдельных форм его природных скоплений наиболее важен минерал флюорит – CaF2.

Получение фтора осуществляется путем электролиза фтористых соединений, причем фтор выделяется на аноде по схеме:

Электролитом обычно служит легкоплавкая смесь состава KF × 2HF. Процесс проводят при температурах около 100 °С в стальных электролизерах со стальными катодами (на которых выделяется водород) и угольными анодами.

Свободный фтор состоит из двухатомных молекул и представляет собой почти бесцветный (в толстых слоях зеленовато–желтый) газ, имеющий резкий запах. Он сгущается в желтоватую жидкость при –188 °С и затвердевает при –218 °С. Распад молекулы F2 на отдельные атомы осуществляется довольно легко (энергия диссоциации 38 ккал/моль).

С химической стороны фтор может быть охарактеризован как одновалентный металлоид и притом самый активный из всех металлоидов. Обусловлено это благоприятным сочетанием ряда факторов – непрочности молекулы F2 , сравнительно малых размеров атома фтора и тем, что он имеет большое сродство к электрону, т. е. энергично притягивает недостающий ему для заполнения внешнего слоя валентный электрон.

Это число –82 ккал/г–атом – и является количественным выражением сродства фтора к электрону.

Подавляющее большинство металлов соединяется с фтором уже при обычных условиях. Однако взаимодействие часто ограничивается образованием поверхностной пленки фтористого соединения, которая предохраняет металл от дальнейшего разъедания.

Так как фтористые производные металлоидных элементов обычно легколетучи, образование их не предохраняет поверхность металлоида от дальнейшего действия фтора. Поэтому взаимодействие с металлоидами часто протекает значительно энергичнее, чем со многими металлами. Например, фосфор и сера воспламеняются в газообразном фторе и сгорают по реакциям:

2Р + 5F2  = 2PF5

 S + 3F2 = SF6

С азотом и кислородом фтор непосредственно не соединяется.

От водородных соединений других элементов фтор отнимает водород. Большинство окислов разлагается им с вытеснением кислорода, В частности, вода разлагается по схеме

F2 + Н2 О => 2HF + О

причем вытесняемые атомы кислорода соединяются не только друг с другом, но отчасти также с молекулами воды и фтора. Поэтому, помимо газообразного кислорода, при этой реакции всегда образуются также перекись водорода и окись фтора (F2 O). Последняя представляет собой бесцветный газ, похожий по запаху на озон.

1) Окись фтора (иначе – фтористый кислород – OF2 ) может быть получена по реакции:

2F2 + 2NaOH = 2NaF + H2 O + F2 O

Она малорастворима в воде и почти не разлагается ею, но под действием сильных восстановителей разложение F2 O (т. пл. –224 °С, т. кип. –145 °С) идет довольно быстро. Окись фтора сильно ядовита.

Практическое использование фтора широко развилось за последние годы. Потребляется он главным образом для фторирования органических соединений (т. е. замены в них водорода на фтор). Процесс этот приобрел большое значение, так как многие фторорганические производные обладают ценными свойствами.

В отличие от свободного фтора, фтористый водород (HF) и многие его производные использовались уже с давних пор.

Непосредственное соединение фтора с водородом сопровождается очень большим выделением тепла:

H2 + F2 = 2HF + 128 ккал

Реакция протекает обычно со взрывом, который происходит даже при сильном охлаждении газов и в темноте. Практического значения для получения HF этот прямой синтез не имеет.

Техническое получение фтористого водорода основано на взаимодействии СаF2 с концентрированной H2 SO4 по реакции:

CaF2 + H2 SO4 = 2HF + CaSO4

Процесс проводят в стальных печах при 120–300°С. Части установки, служащие для поглощения HF, делаются из свинца.

Фтористый водород представляет собой бесцветную легколетучую жидкость (т. пл. – 83°С. т. кип, +19,5 °С), смешивающуюся с водой в любых соотношениях. Он обладает резким запахом, дымит на воздухе (вследствие образования с парами воды мелких капелек раствора) и сильно раздражает дыхательные пути.

2) Связь Н–F характеризуется весьма высокой полярностью (0,45). Этим обусловлена резко выраженная склонность фтористого водорода к ассоциации путем образования водородных связей по схеме [···H···F···H···F···].

Энергия такой связи составляет около 7 ккал/г–атом, т. е. она несколько прочнее, чем водородная связь между молекулами воды.

Химические свойства HF существенно зависят от отсутствия или наличия воды. Сухой фтористый водород не действует на большинство металлов. Не реагирует он и с окислами металлов. Однако если реакция начнется, то дальше она некоторое время идет с самоускорением, так как в результате взаимодействия по схеме МО + 2HF = MF2 + Н2 О

количество воды увеличивается.

Подобным же образом действует фтористый водород и на окислы некоторых металлоидов. Практически важно взаимодействие его с двуокисью кремния – SiO2 (песок, кварц), так как последняя входит в состав стекла. Реакция идет по схеме SiO2 + 4HF = SiF4 + 2Н2 О

Поэтому фтористый водород нельзя получать и сохранять в стеклянных сосудах. Обычно его растворы хранят в бутылях из искусственных пластмасс, на которые HF не действует.

На взаимодействии HF с SiO2 основано применение фтористого водорода для «травления» стекла. Вследствие удаления частичек SiO2 поверхность его становится матовой, чем пользуются для нанесения на стекло различных надписей и т.п.

3) Рассмотренные выше случаи взаимодействия сухого фтористого водорода с окислами металлов и металлоидов могут служить типичным примером аутокаталитических реакций, т. е. таких процессов, при которых катализатор (в данном случае – вода) не вводится в систему извне, а является одним из продуктов реакции. Как показывает рис. 95, скорость подобных процессов сначала, по мере увеличения в системе количества катализатора, нарастает до некоторого максимума, после чего начинает уменьшаться вследствие понижения концентраций реагирующих веществ.

В водном растворе HF ведет себя, как одноосновная кислота средней силы. Продажный раствор этой фтористоводородной (иначе, плавиковой) кислоты содержит обычно 40% HF.

Фтористоводородная кислота более или менее энергично реагирует с большинством металлов. Однако во многих случаях реакция протекает лишь на поверхности металла, после чего последний оказывается защищенным от дальнейшего действия кислоты слоем образовавшейся труднорастворимой соли. Так ведет себя, в частности, свинец, что и позволяет пользоваться им для изготовления частей устойчивой к действию HF аппаратуры.

4) Помимо электролитической диссоциации по уравнению HF <=> H· + F· (K = 710–4), для плавиковой кислоты характерно равновесие: F’ + HF <=> HF2 . Значение константы этого равновесия [HF’2 ]/[F’][HF] = 5 показывает, что в растворах HF содержится больше сложных анионов (FHF)' [имеющих линейную структуру с d(FF) = 2,3 А], чем простых анионов F’.

Соли фтористоводородной кислоты носят название фтористых или фторидов. Большинство их трудно растворимо в воде – из производных обычных металлов хорошо растворяются лишь фториды Na, К, Ag, Al, Sn и Hg. Все соли плавиковой кис–логы ядовиты. Сама она при попадании на кожу вызывает образование болезненных и трудно заживающих ожогов (особенно под ногтями). Поэтому работать с ней следует в резиновых перчатках.

Практическое применение плавиковой кислоты довольно разнообразно. Она используется в нефтяной промышленности (при синтезе высококачественных бензинов), для удаления песка с металлического литья, при анализах минералов и т. д. Широкое практическое применение находят также некоторые фториды, которые будут ближе рассмотрены при соответствующих элементах.

Хлор

По распространенности в природе хлор близок к фтору–на его долю приходится 0,02% от общего числа атомов земной коры. Человеческий организм содержит 0,25% хлора по весу.

Первичная форма нахождения хлора в природе отвечает его чрезвычайному распылению: небольшие количества этого элемента входят в состав самых различных минеральных пород земнойкоры. В результате работы воды, на протяжении многих миллионов лет разрушавшей горные породы и вымывавшей из них растворимые составные части, соединения хлора скоплялись в морях. Усыхание последних привело к образованию во многих местах земного шара мощных залежей NaCl, который и служит основным исходным сырьем для получения хлора.

Общее мировое потребление хлора (без СССР) составляет около 10 млн. т ежегодно. Используется он главным образом для беления тканей и бумажной массы, обеззараживания питьевой воды (примерно 1,5 г на 1 м3) и в химической промышленности.

Основным промышленным методом получения хлора является электролиз концентрированного раствора NaCl (рис. 96). При этом на аноде выделяется хлор (2Сl’ – 2e– = Сl2 ), а в катодном пространстве выделяется водород (2Н· + 2e– = H2 ) и образует NaOH.

При лабораторном получении хлора обычно пользуются действием МnО2 или КМnО4 на соляную кислоту:

МnО2 + 4НСl = МnСl2 + Cl2 + 2Н2 О

2КМnО4 + 16НСl = 2КСl + 2МnСl2 + 5Сl2 + 8Н2 О

Вторая реакция протекает значительно энергичнее первой (требующей подогревания).

Свободный хлор представляет собой желто-зеленый газ (т. пл. -101 °С, т. кип. -34°С), состоящий из двухатомных молекул. Один объем воды растворяет около двух объемов хлора. Образующийся раствор часто называют «хлорной водой».

Хлор обладает резким запахом и вызывает воспаление дыхательных путей, В качестве средства первой помощи при острых отравлениях им применяется вдыхание паров смеси спирта с эфиром. Полезно также вдыхание паров нашатырного спирта.

По своей характерной химической функции хлор подобен фтору — он также является активным одновалентным металлои­дом. Однако активность его меньше, чем у фтора. Поэтому последний способен вытеснять хлор из соединений.

Тем не менее химическая активность хлора очень велика - он непосредственно соединяется почти со всеми обычными металлами (иногда лишь в присутствии следов воды или при нагревании) и со всеми металлоидными элементами, кроме углерода, азота и кисло рода. Важно отметить, что при отсутствии влаги хлор практически не действует на железо.

1) Взаимодействие хлора с фтором происходит лишь при нагревании их смеси выше 200 °С. В этих условиях образуется бесцветный ClF (т. пл. -154 °C,т. кип. -101 °С), а нагреванием его с избытком фтора может быть получен бесцветный ClF3 . Оба вещества характеризуются своей исключительно высокой реакционной способностью.

 Взаимодействие хлора с водородом по реакции Н2 + Cl2 = 2HCl + 44 ккал

при обычных условиях протекает крайне медленно, но при нагревании смеси газов или ее сильном освещении (прямым солнечным светом, горящим магнием и т. д.) реакция сопровождается взрывом.

Детальное изучение этой реакции позволило выяснить характер протекания ее отдельных стадий (т. н. элементарных процессов). Прежде всего, за счет энергии ультрафиолетовых лучей (или нагревания) молекула хлора диссоциирует на атомы, которые затем реагируют с молекулами водорода, образуя НСl и атом водорода. Последний, в свою очередь, реагирует с молекулой хлора, образуя НСl и атом хлора, и т. д. Весь процесс может быть изображен следующей схемой:

Таким образом получается как бы цепь последовательных реакций, причем за счет каждой первоначально возбужденной молекулы Сl2 образуется до миллиона молекул НСl. Реакции подобного типа называются цепными. Они играют большую роль при протекании многих химических процессов.

В настоящее время прямой синтез является основным промышленным методом получения НСl. Исходным сырьем служат хлор и водород, одновременно выделяющиеся при электролизе раствора NaCl. Спокойное протекание процесса обеспечивают смешиванием обоих газов лишь в момент взаимодействия.

2) После первоначального поджигания смесь хлора с водородом продолжает гореть спокойным пламенем, образуя хлористый водород. Последний проходит затем через две поглотительные башни, в которых и поглощается водой. Используемый в системе принцип противотока, т. е. противоположных направлений движения газа и жидкости, обеспечивает полноту поглощения НСl и позволяет проводить весь процесс непрерывно.

Другой метод технического получения НСl основан на взаимодействии NaCl и концентрированной H2 SO4 по реакциям:

NaCl + H2 SO4 = NaHSO4 + HCl

NaCl + NaHSO4 = Na2 SO4 + HCl

Первая из них отчасти протекает уже при обычных условиях и практически нацело – при слабом нагревании; вторая осуществляется лишь при более высоких температурах. Для проведения процесса служат механические печи большой производительности.

Хлористый водород представляет собой бесцветный газ (т. пл. –112°С, т. кип. –84 °С). В отсутствие влаги при обычных температурах он не действует на большинство металлов и их окислов. Газообразный кислород окисляет его только при нагревании.

На воздухе хлористый водород дымит вследствие образования с парами воды капелек тумана. Растворимость его весьма велика: при обычных условиях 1 объем воды способен поглотить до 450 объемов хлористого водорода.

Раствор НСl в воде называется хлористоводородной (иначе – соляной) кислотой. Последняя относится к числу наиболее сильных кислот. Концентрированная соляная кислота имеет плотность 1,19 и содержит около 37% хлористого водорода.

Подобно другим сильным кислотам, НСl энергично растворяетмногие металлы. Большинство ее солей – хлористых, илихлоридов, – хорошо растворимо в воде. Из производных обычных металлов труднорастворимы лишь хлориды серебра исвинца.

Ежегодное мировое потребление соляной кислоты исчисляется миллионами тонн. Широкое практическое применение находят также многие ее соли.

Так как с кислородом хлор не взаимодействует, его кислородные соединения могут быть получены лишь косвенными методами. При рассмотрении путей их образования целесообразно исходить из обратимой реакции между хлором и водой Сl2 + Н2 О = НСl + НОСl

При обычных условиях в насыщенном растворе гидролизовано около половины всего растворенного хлора.

Из образующихся при гидролизе хлора двух кислот – соляной и хлорноватистой (НОСl) –первая является очень сильной, а вторая – очень слабой (К = 3 ·10–8). Это резкое различие в силе обеих кислот можно использовать для их разделения.

Если в воде взболтать порошок мела (СаСОз) и затем пропускать в нее хлор, то соляная кислота реагирует с мелом (по уравнению СаСО3 + 2НСl = СаСl2 + СО2 + Н2 О), а хлорноватистая накапливается в растворе. Подвергая реакционную смесь перегонке, получают в приемнике разбавленный раствор НОСl.

Будучи соединением неустойчивым, НОСl медленно разлагается даже в таком разбавленном растворе. Соли хлорноватистой кислоты называются хлорноватистокислыми, или гипохлоритами. Сама НОСl и ее соли являются очень сильными окислителями.

Метод получения гипохлоритов основан на использовании приводившейся выше обратимой реакции взаимодействия хлора с водой. Так как оба вещества правой части равенства НСl и НОСl – дают в растворе ионы Н+, а оба исходных продукта – Сl2 и Н2 О – таких ионов практически не образуют, равновесие можно сместить вправо, связывая ионы Н+.

Добиться этого проще всего добавлением к реакционной смеси щелочи. Так как по мере образования ионы Н будут связываться ионами ОН' в недиссоциированные молекулы воды, равновесие сместится вправо. Применяя, например, NaOH имеем:

Сl2 + Н2 О <–––> НОСl + НСl

HOCl + НСl + 2NaOH –––>NaOCl + NaCl + 2H2 O

или в общем:

Сl2 + 2NaOH –––>NaOCl + NaCl + Н2 О

В результате взаимодействия хлора с раствором щелочи получается, следовательно, смесь солей хлорноватистой и соляной кислот. Образующийся раствор («жавелевая вода») обладает сильными окислительными свойствами и широко применяется для отбелки тканей и бумаги.

При взаимодействии хлора с более дешевой щелочью – Са(ОН)2 – образуется так называемая хлорная известь.

Бром

При получении свободных брома и иода чаще всего пользуются вытеснением их хлором по реакциям, например:

MgBr2 + Сl2 = MgCl2 + Вr2

2KJ + Сl2 = 2КСl + J2

Бром выделяется при этом в виде тяжелой буро–краснойжидкости, иод – в твердом состоянии. Ежегодная мировая добыча брома оценивается десятками тысяч тонн, иода – тысячами тонн.

По основным физическим свойствам бром и иод закономерно укладываются в один ряд с хлором и фтором, как это видно из приводимой ниже таблицы (в которую включен также водород).

Плотность брома равна 3,1, иода – 4,9. Так как давление пара твердого иода очень велико, он при нагревании обычно возгоняется. Возгонкой технического иода пользуются для его очистки.

Пары брома и иода обладают резким запахом. По действию на организм бром очень близок к хлору. Он находит наибольшее применение для выработки специальных добавок, повышающих качество моторных бензинов. В виде 5%–ного спиртового раствора (йодной настойки) иод применяется для стерилизации ран. Соединения обоих тяжелых галоидов широко применяются в фотографии, медицине и т. д.

Растворимость брома в воде составляет около 35 г, а иода–0,3 г на литр.. Оба эти галоида (и астат) гораздо лучше растворяются в различных органических растворителях, чем в воде.