Practice nursing care to clients with Infusion Therapy

Practice nursing care to clients with Infusion Therapy

The term infusion therapy refers to a wide variety of techniques and procedures that health care professionals use to deliver parenteral medications and fluids to their clients. In intravenous (IV) therapy and arterial therapy, medications and fluids are infused into the vascular system. Intraperitoneal therapy is infusion of medications and fluids into the body cavity. Subcutaneous therapy is infusion of medications and fluids into the subcuta­neous tissue. Central nervous system therapy is infusion of medications and fluids into the epidural space or intrathecally. Intraosseous therapy is infusion of medications and fluids into the bones. This chapter focuses on access for and administra­tion of infusion therapy. Various types of fluids for infusion are discussed throughout the text where appropriate.




Approximately 90% of hospitalized clients receive some type of infusion therapy. Health care providers prescribe infusion therapy for a variety of reasons, including maintenance, re­placement, treatment, palliation (promoting comfort), or a combination of these.

Not long ago, most clients received infusion therapy as in-patients in acute care facilities. With the advent of computer­ized ambulatory and implantable infusion control devices, as well as long-term infusion access devices, clients now receive infusion therapy in virtually any setting, including their homes.

Some agencies have specialized teams that focus on all of the procedures associated with infusion therapy. These infu­sion, or IV, teams:

*   Develop infusion policies and procedures

   Start peripheral IV lines and place peripherally inserted
central catheters

  Administer parenteral fluids and medications

  Administer parenteral nutrition and blood products

  Maintain infusion devices
They may also:


  Provide input to agency purchasing departments regard­
ing infusion devices and equipment

  Monitor infusion-related complications

  Provide consultation to health care providers and clients
regarding device selection and placement

  Engage in quality improvement activities

The continued use of IV teams in health care settings is a controversial issue. In this time of "downsizing," "right-sizing," and "re-engineering," most agencies have disbanded their IV teams, leaving these responsibilities to nurse generalists or un­licensed technicians. The impact of a dedicated IV team was re­cently tested by a large Veterans' Administration medical cen­ter. The medical center started a new IV team and subsequently found that the rate of primary nosocomial bloodstream infec­tions decreased by 35%. There was a 51% decrease in blood­stream infections caused by Staphylococcus aureus. The excess costs per life saved and infection prevented were projected to be $53,000 and $14,000, respectively (Meier, 1998).

The Intravenous Nurses Society (INS), the professional nursing organization for infusion therapy nurses, publishes standards of care that provide the basis for the practice of in­fusion nursing. Its affiliate organization, the Intravenous Nurses Certification Corporation (INCC), offers a written cer­tifying examination. Nurses who successfully complete this examination may use the initials CRNI, which stand for "cer­tified registered nurse infusion." The INS is currently the only organization offering certification in infusion therapy. The Oncology Nurses Society (ONS) is another professional or­ganization of registered nurses and other health care profes-sionals that has developed access device guidelines for nurs­ing practice (ONS, 1996). For more information on these or­ganizations, see


Nurses administering infusion therapies need to understand the way in which infusion systems work. This knowledge en­sures that the nurse can benefit from a particular system's ad­vantages while minimizing any potential complications.



Infusion containers are generally made of glass or plastic. Plastic containers are used most often. Glass infusion systems are of two types: the separate-airway system and the integral-airway system. The separate-airway system has a plastic tube or "straw" attached to the inside of the thick, hard cork-type stopper. This tube extends almost the entire length of the bot­tle to above the fluid level of a full bottle. Unfiltered air enters through the straw and exerts pressure on the surface of the fluid, allowing the fluid to pass through the administration set. The integral-airway system is also an "open" system. In this system, air enters through a side port filter on the administra­tion set. This type of set is often referred to as "vented" tubing.

Plastic containers may be soft and totally collapsible or semirigid. Both of these types of containers are considered "closed" systems, since they do not rely on outside air to al­low the fluid to infuse. Instead, atmospheric pressure pushes against the flexible sides of the container, allowing the fluid to flow by gravity. For this reason, plastic containers use "nonvented," or "unvented," tubing.

The totally collapsible plastic containers are usually made of polyvinyl chloride (PVC). Some PVC materials are incompati­ble with nitroglycerin, insulin, and fat emulsions. Nitroglycerin and insulin adhere to the walls of the PVC container, making it impossible to know exactly how much medication the client is receiving. Fat emulsions leach the plasticizer diethylhexylph-thalate (DEHP), a component of some PVC containers, thereby making this substance an unintended part of the infusion.

Although they are plastic, semirigid containers do not have the same compatibility problems associated with containers made of PVC. These containers, as their name indicates, are less flexible than totally collapsible plastic containers.

Administration Sets

The administration set is the connection between the access de­vice and the container with the infusion solution. Numerous ad­ministration sets are available in many different configurations. The type of administration set that the nurse chooses depends on the type and purpose of the infusion. Some sets are generic, meaning that they are appropriate for most infusions. Other sets are designed to be used for specific types of infusions. Still other sets are "dedicated," meaning that they must be used with a specific manufacturer's infusion control device. Information that describes their proper use is usually provided on the pack­aging of administration sets. Table describe some of the standard and miscellaneous compo­nents of administration sets and how to use them.

Filters remove particulate matter suspended in the infusion solution while allowing the fluid to pass through to the client. Filters may be membrane filters or depth filters. Both types of filters may be "in-line" (an integral part of the administration set) or "add-on" (a filter set that is separate and must be added to the administration set).

A membrane filter has tiny pores or holes sized to prevent the passage of particles into the filter. These pores capture any particles that may be in the solution and trap them on the sur­face of the filter. One problem associated with membrane fil­ters is that they are prone to "loading." This means that the fil­ter's surface becomes completely coated with particulate matter, so that the filter will no longer work as a filter. It is for this reason that membrane filters are best suited as final filters rather than as primary filters.

A depth filter has a mazelike configuration. Any particles suspended in the fluid pass through the surface and become trapped in the multitude of passages as they travel through the labyrinth. In addition, depth filters have adsorption properties that cause any particles to adhere to the filter material itself. The size of the particle does not influence the adsorption of the filter material.

Both membrane and depth filters are rated by the size of the smallest particles they hold back. A 0.22-micron filter re­tains any particles 0.22 micron or larger. These particles may be particulate matter or organisms, such as Escherichia coli and Pseudomonas.

Needleless Systems

In July 1992 the Occupational Safety and Health Administration (OSHA) published its guidelines entitled Occupational Expo­sure to Bloodborne Pathogens, Final Rule. This document re­quires health care organizations to initiate engineering controls "that isolate or remove the bloodborne pathogen hazard from the workplace." Currently there are a number of products avail­able and more entering the market every day that are designed to minimize health care workers' exposure to contaminated nee­dles. Some of these products include devices that use blunt metal cannulas or needles recessed into a plastic housing. Oth­ers use blunt plastic cannulas, and still others include valves. Figure 14-1 displays two common needleless systems currently available. Some companies have gone a step further to reduce the risk of needle sticks by manufacturing an IV catheter that, with the push of a button, retracts the needle (Figure 14-2).

Many studies have been conducted comparing various needleless systems with conventional venous access systems (see the Evidence-Based Practice for Nursing Box on p. 199). For example, Mendelson et al. (1998) concluded that the needle­less system for peripheral infusions is effective in reducing per­cutaneous injuries to staff and is not associated with an increase in either insertion site complications or nosocomial bacteremia.

Infusion Regulation Devices

The ability to regulate the rate and volume of infusions is crit­ical to the safe and accurate administration of medications and fluids to clients. Nurses have a choice of numerous de­vices designed to regulate infusions. Infusion devices can be mechanically or electronically regulated. Mechanically regu­lated systems, such as an elastomeric device, delivers med­ications and fluids by positive pressure and has no power source, such as a battery or alternating current. These small, portable devices administer small-volume, long-term, inter



Spike                        Hard plastic tube with a sharp point; plastic cover or sheath over the spike must be removed before use

Shield                        Hard plastic disk below the spike

Drip chamber          Plastic tube between the shield and the tubing; the bottom of the spike extends into this chamber

Bottom of spike      Plastic or metal piece that extends into the drip chamber

Tubing                     May be of varying lengths and diameters

Clamps                    May be screw clamp or roller clamp

Flashball                  A piece of latex with small circles on the surface that highlight areas reinforced with self-sealing material

Connectors             At the end of the tubing, may be slip tip, Luer-Lok, or slip Luer-Lok

Y-site                     Set may have one or more; may be called injection site or side-arm; hard plastic tube; upper end has either a self-sealing injection port or a valve;                                                                                                                                           .                                  bot­tom of the Y-site is an integral part of the admin­istration set tubing


On-off clamps        May be slide or clip; not appropriate for regulating rate of flow

Burettes                 Reservoir that is either incorporated into the adminis­tration set or an add-on device; the reservoir holds between 100 and 150 mL of fluid; the burette is calibrated on the side to assist with accurate measurement; at the top or bottom of the burette is a rubber cap that looks like the end of a Y-site; through this self-sealing cap, the nurse can add any medications or additives ordered for the client

Back-check valves

Passive flow control devices

           When present, a back-check valve is built into the administration set; the device is a hard plastic one-way valve

           Usually an add-on device that looks like an exten­sion set with a dial

           Sharp point penetrates the solution container, sheath maintains sterility of the spike

           Prevents the nurse's hands from slipping onto the spike when inserting it into the fluid container

          Used to prime the administration set and to verify con­tinued flow

          Size controls the volume of fluid in each drop; may be macrodrip, minidrip, or microdrip; volume of a macro-drip varies among manufacturers from 10 to 20 drops/mL (gtt/mL); microdrip or minidrip is 60 gtt/mL

Connects the drip chamber to the connector device

Controls the rate of fluid flow through the administration

Connects the tubing to the connector; reinforced areas used for needle access to infusion to administer IV push medications

Connects the administration set to the client's access device

Used for piggybacking intermittent medications into the client's primary infusion

Used to open or close the administration set to flow

The burette is useful for mixing IV medications for ad­ministration or for controlling the amount of fluid available for administration, a critical consideration in the care of the young child or the older client

Back-check valves allow fluid to travel away from the solution container but prevents fluid from flowing upstream toward the container

Regulates the rate of infusion in mL/hr; all other clamps are left open, and the passive flow control device regulates administrations at the prescribed rate

Piggybacking an Intermittent

Medication Using a Burette

Verify the order from the health care provider.

1.Check the compatibility between the medication and the large-volume parenteral (LVP) infusion and its additives.

1.Spike the medication mini-bag with the secondary set.

2.Prime the secondary set, close the roller clamp, and hang the mini-bag on the other arm of the IV pole.

3.Place the hanger that comes with the secondary set on the IV pole with the LVP.

4.Cleanse the lowest Y-site injection port on the LVP admin istration set.

5.Attach the secondary set to the Y-site.

6.Lower the level of the LVP by hanging it from the hanger. Do not adjust the LVP roller clamp. (The rate will decrease and then stop when the secondary set is opened.)

7.Open the roller clamp on the secondary set and regulate the flow to the desired rate.

8.When the intermittent infusion completes, the LVP will au­tomatically begin again. Hang the LVP from the IV pole and adjust the roller clamp to deliver the prescribed rate.


1.To fill the burette, close the main clamp below the burette.

2.Open the clamp between the solution container and the burette, allowing the fluid to flow into the burette.

3.When the burette contains the amount of fluid desired, close the clamp between the solution container and the burette.

4.If using the burette for administration of intermittent medica­tions, add the prescribed medication now and gently swirlthe burette.

5.Regulate the rate of the infusion from the burette with the lower clamp.

Figure. Needleless infusion systems. A. Burron Safesite IV System Valve and "deadhead."

B. Clave system in use. (A courtesy B. Braun Medical, Inc., Bethlehem, PA; Â courtesy ICU Medical, Inc., San Clemente)

Figure. Insyte AutoGuard IV catheters. With the push of a button, the needle instantly retracts, reducing the risk of accidental nee­dle stick injuries. (Courtesy Becton Dickinson Infusion Therapy Sys­tems, Sandy, UT.)


Electronic infusion devices fall into two categories: con­trollers and pumps, based on the principle of operation. Nurses and clients who use these electronic infusion devices reap the benefits of some of the latest computer technology. Infusion regulation devices can save nursing time, prevent clients from receiving too much infusion solution, reduce the incidence of infiltration, and keep infusion access devices patent. However, the nurse must remember that the use of these devices does not decrease the practitioner's responsibility to carefully monitor the client's infusion site and the infusion rate.

A controller is a stationary, pole-mounted electronic device that can be classified as either nonvolumetric or volumetric. Nonvolumetric controllers rely completely on gravity for flow. A drop sensor attached to the drip chamber of the administra­tion set regulates flow. Volumetric controllers also count drops and electronically convert the drops to milliliters per hour. Be­cause controllers rely on counting drops, which vary in size and therefore volume, controllers are not as accurate as pumps.

Pumps may be either stationary (pole mounted or table-top), ambulatory (portable), or implantable (surgically im­planted into the client). As their name indicates, these devices actually pump medications or solutions under pressure. Sta­tionary pumps may be nonvolumetric or volumetric. Nonvol­umetric pumps count drops and, as with controllers, are in­herently inaccurate because of the variation in drop size. Three types of volumetric pumps are available: syringe, cassette, and peristaltic. Syringe pumps use a mechanism that continuously closes the plunger at a selected milliliter-per-hour rate. The use of syringe pumps is limited to small-volume continuous infusions or intermittent infusions. Sy­ringe pumps are generally not appropriate for continuous administration of larger volumes, since they require very fre­quent syringe changes. Cassette pumps use special sets (ded­icated sets) that include a pumping chamber of exact volume. This volume is displaced by means of either a piston or a di­aphragm at the selected milliliter-per-hour rate. Cassette pumps usually require special techniques to prime the admin­istration set but are appropriate for use when delivering large-volume infusions. Peristaltic pumps are also appropriate for large-volume infusions. They control the rate of the infusion by squeezing the tubing with finger-like projections that in­termittently "walk across" the administration set tubing.

Ambulatory pumps are generally used for home care clients and allow them to return to their usual activities while receiving infusion therapy.

Implantable pumps usually include a catheter as part of the pump. The physician places the catheter in a vessel that feeds the "target" organ or structure. Implantable pumps also have a chamber that holds the medication and at least one self-sealing septum. The clinician or trained layperson accesses the medication chamber through the septum to (re)fill or empty the chamber. Implantable pumps are placed in the client's trunk via a laparotomy. Usual implant sites are the lower ab­domen, the subclavicular area, and the subscapular area. Com­mon uses for these pumps include regional chemotherapy and continuous intraspinal pain management.

Intravenous Therapy


Intravenous (IV) therapy involves infusing medications and/or solutions into the client's veins through a venous ac­cess device (VAD). The placement of the tip of the IV cannula

Nurses and clients have been exposed to risks since the insti­tution of IV therapy. The greatest risks are needle stick injuries with possible exposure to bloodbome pathogens, as well as catheter-related infection or bacteremia. In 1992 the Occupa­tional Safety and Health Administration (OSHA) published guidelines to decrease these risks. Since then, many different needieless systems have been developed and studied to de­termine the actual risks to staff and clients and the cost-effectiveness for the health care agency.

In a study conducted in a 1100-bed teaching medical cen­ter, a comparison was made between a needieless (NL) ac­cess system and a conventional heparin lock (CHL) system. A random selection of clients was assessed for local IV site complications, including the development of nosocomial bac­teremia and device-related complications. Staff members were assessed for percutaneous injuries. During the study, 35 percutaneous injuries were reported. Eight were CHL related; no NL-related injuries were reported. Of 773 episodes of pos­itive blood cultures on study and control units, 0.8% were de­vice related, showing virtually no differences between an NL and a CHL system. The projected cost to the institution for hospital-wide implementation of an NL system for intermittent access for peripheral infusions was estimated at $82,845, or $230 per 1000 client days.

Critique. This study was performed on a large group of ran­domly selected clients. The data demonstrate that the needle-less system performs as well as the conventional IV access system with respect to the risk of microbial contamination. The study examined only intermittent IV access systems for pe­ripheral infusions and did not consider the effects of these sys­tems when used on central venous access devices. However, since much of the data are based on technique and usage of these systems, similar outcomes could be concluded.

Implications for Nursing. The ability of the nurse to initiate and manage a client receiving IV therapy safely is of great concern to the nurse, the client, and the health care agency. A needieless IV access system provides a safer means of IV therapy for the nurse and virtually no greater risk to the client. Nurses must be meticulous in using the appropriate disinfec­tion before accessing either system. Each health care agency should consider these data, their own available resources, and data regarding frequency and risk of intermittent access device-related injuries in its own staff when selecting any needieless system or safety device.

determines whether the therapy is considered peripheral or central venous therapy. In peripheral venous therapy, the tip of the cannula remains in the peripheral veins. Central venous therapy involves placing the tip of the cannula or catheter into the superior vena cava (SVC).




Peripheral IV therapy is the most common method of gain­ing access to the client's venous system. Nurses competent in venipuncture insert the needle or flexible cannula percuta-neously (through the skin) into the vein. Under most circum­stances the peripheral veins offer the quickest and easiest ap­proach to establishing a route for administering IV solutions and medications. These solutions and medications may be ad-


Placement of Peripheral Venous Access Devices


  Obtain a health care provider's order for placing a peripheral
IV cannula.

  For adults, place a peripheral IV catheter only in the upper

  Use the client's nondominant hand when possible.

  Do not use the arm on the side where the client has a mas­
tectomy, a lymph node dissection, an arteriovenous shunt or
fistula, or venous revision.

  Use the most distal area of the client's arm above the wrist
for the initial insertion and work your way up the client's arm
to more proximal sites for subsequent insertions.

  Avoid placing a peripheral IV catheter over a joint.

  Avoid placing a peripheral IV cannula in a vein that is
bruised, has puncture wounds from other venipunctures, is
streaked, is hard, has a palpable cord, or is tender to touch.


Figure: cannula                            Figure: syringe            Figure: IV Bag and Drip Chamber

Ministered for therapeutic or diagnostic purposes, including the following:

*   Replacement of fluid, electrolyte, and nutrient losses

*   Administration of anti-infectives

*   Blood and blood product transfusions

Administration of enhancing agents for diagnostic imaging An order from a health care provider is necessary beforethe nurse initiates IV therapy. The order usually includes the following:

*Specific type of solution to be given

*Rate of administration written in milliliters per hour, milligrams per hour, grams per hour, or units per hour

*Total volume of the infusion

*Number of hours for infusion

If the health care provider orders medication for IV ad­ministration, the dose, volume, solution or diluent, rate, and frequency of administration are usually included in the order. In many agencies the infusion pharmacist determines the so­lution and volume for the medication admixture.

When determining which site to use to initiate peripheral IV therapy, the nurse considers the client's age, history, and diagnosis; the type and duration of the prescribed therapy; and whenever possible, the client's preference.

The veins considered the most appropriate for most types of peripheral IV therapy are in the upper extremities and in­clude the metacarpal, basilic, cephalic, and median veins, as well as their branches (Figure 14-3). Veins that are resilient, long, and straight are the best choices for cannula placement. Veins that are hard, knotty, or sclerotic are difficult to cannu-late and are likely to infiltrate. For short-term therapy it is rec­ommended that the nurse place the initial IV catheter in the most distal site of the client's arm and use more proximal sites for subsequent IV cannula insertions.

When determining which vein and which type of periph­eral access device to use, the nurse considers the product to be infused. The administration of an isotonic solution, such as 5% dextrose in water (D5W), does not require any specific precautions related to the size of the vein or the type of catheter used for infusion. However, medications or solutions that are viscous or those with a high osmolality or a high or low pH can be harsh and cause vein irritation. For adminis­tration of medications or solutions with these properties, nurse should consider using a larger vein to decrease the po­tential for complications.

Most veins may be used for IV administrations that are of short duration, such as a one-time dose of an IV push medica­tion that does not have vein-irritating properties. An infusion of a medication or solution with vein-irritating properties requires a larger vessel to reduce the probability of complications.


The nurse considers the age and condition of the client; the size, location, and condition of the available veins; and the type and duration of the infusion. The shortest, smallest-gauge device that accommodates the vein, type of infusion, and duration of therapy is the nurse's best choice when se­lecting an IV catheter.

IV access devices, also known as venous access devices (VADs), may be categorized in a variety of ways. For the pur­pose of this discussion, peripheral IV catheters are catego­rized by dwell time (the amount of time the catheter may stay in the vein before being replaced)either short-term dwell or long-term dwell.


Winged metal sets and most over-the-needle catheters are short-term dwell catheters. Most short-term dwell periph­eral catheters have a dwell time of 48 to 72 hours.

A metal winged IV set is commonly known as a butterfly. Many practitioners consider these catheters easy to insert, but they contribute to practitioner needle sticks. The practitioner holds the wings between the thumb and forefinger to insert the device. After insertion the wings lie flat against the client's skin.

The standard over-the-needle catheter is between Ó4 and 3 inches long and ranges in size from 14 to 26 gauge. The over-the-needle catheter consists of a needle inside a polyethylene or plastic catheter. The practitioner removes the needle after making the venipuncture, and the plastic catheter remains in­side the vessel.


Long-term dwell peripheral catheters, such as the midline or midclavicular catheters, are usually through-the-needle cath­eters. Through-the-needle catheters have either a break-away needle or a plastic peel-away sheath to encase the needle after the catheter is advanced through it. Some controversy exists over the amount of time these longer-dwell catheters may stay in place. Some believe that the midline and midclavicular catheters may remain in place for as long as the client exhibits no complications or until he or she no longer requires venous access. In a position paper, the Intravenous Nurses Society (INS) recommends that the maximum dwell time for midline catheters be limited to 2 to 4 weeks and that the maximum dwell time for midclavicular catheters be limited to 2 to 3 months (INS, 1997a). Blood specimens may be drawn from in­dwelling peripheral catheters, but consideration must be given to the guidelines set by the manufacturer. When a blood speci­men is obtained from a venous access device, blood is with­drawn and discarded before sample collection. Table de­scribes the blood volume to be discarded before blood sample collection from each venous access device as recommended by the Oncology Nurses Society (ONS) standards of practice.

A midline catheter is a through-the-needle catheter that the nurse usually inserts at the antecubital fossa into the basilic, cephalic, or median cubital veins. The tip of the midline catheter rests in the vein about 6 to 8 inches above the insertion site.

A midclavicular catheter is a through-the-needle catheter that is longer than a midline catheter. The tip of the midclavic­ular catheter usually rests at the midclavicular line. This area is the approximate junction of the axillary and subclavian veins.


Older adults receiving IV therapy have special needs. The normal aging process presents changes in the skin and ves­sels that require the nurse's attention.

The older person's skin is typically loose, thin, and trans­parent. As people age, they lose subcutaneous fat, the dermis thins, and the density and amount of collagen lessen. Elastin fibers just below the dermis become more abundant but less effectively organized. The fine elastin fibers in the dermis dis­appear. All of these changes account for the decreased elas­ticity found in the older client's skin.

The older adult's veins appear tortuous and large because of inadequate venous pressure. The veins are likely to roll, since there is little connective tissue to hold them, and the veins themselves become more fragile. These changes may require the nurse to alter the IV insertion technique. Chart 14-4 outlines special considerations for the older adult receiving peripheral IV therapy. Fluid overload, electrolyte imbalances, and other problems can develop when administering fluids to the older client with compromised renal and cardiovascular function. The nurse can prevent complications of IV therapy through careful as­sessment and monitoring (Powers, 1999).

For older adults who are confused as a result of delirium or de­mentia, maintaining an intact IV system is often a challenge. The client tends to "pick" at the tubing or, in some cases, pull out the IV line. The nurse protects the site but ensures that it is visible at all times for assessment and maintenance .



Central venous therapy involves the placement of a flexible catheter into one of the client's central veins. The tip of the catheter is most commonly situated in the superior vena cava. Drags, fluids, nutrients, enhancing diagnostic agents, and blood and blood products may be infused through a central IV line. At times, a central venous catheter (CVC) is placed be­cause peripheral venous access is inadequate for the duration
or type of IV therapy required. In some clients a CVC allows the nurse to measure and monitor central venous pressure (CVP). In other cases a CVC is inserted to ensure venous ac­cess when IV therapy is prescribed.

There are a number of criteria to consider when determin­ing the type of CVC to use. The type and duration of therapy, the setting in which the therapy will be given, and the client's lifestyle, activity, and personal preference all play a role in de­termining the type of catheter the client will receive.

Each of the devices discussed here, with the exception of the peripherally inserted central catheter, requires a physician to insert the catheter.



Nontunneled catheters may be placed at the client's bed­side. The physician inserts the catheter percutaneously (through the skin) in a manner similar to that for a through-the-needle peripheral IV catheter.


Transparent dressing every 5-7 days or gauze dress­ing qod or with catheter change

Transparent dressing every 5-7 days or gauze dress­ing qod or with catheter change

24 hr postinsertion, then transparent dressing every 5-7 days or gauze dressing qod

Transparent dressing every 5-7 days or gauze dress­ing qod, then clean tech­nique unless myelosup-pressed

For continuous access, change noncoring needle and transparent dressing every week or gauze dressing qod

Transparent dressing every 5-7 days or gauze dress­ing qod, then clean tech­nique unless myelosup-pressed

Transparent dressing every 5-7 days or gauze dress­ing qod or with catheter change

Transparent dressing every 5-7 days or gauze dress­ing qod or with catheter change


Cap Changef

Blood Withdrawal Discard

Every week or with catheter change

0.5-1 mL

Every week

1-2 mL

Every week

1-2 mL

Every week

3-5 mL



Considerations When Receiving Peripheral Intravenous Therapy

If the client's veins appear large and tortuous, do not use a tourniquet. Having the client hold the arm in a depend­ent position may fill the veins sufficiently for venipunc-ture.

Do not use hand veins for starting an IV line. These veins are too small and limit the older client's ability to perform activities of daily living.

Use the smallest-gauge IV catheter possible, preferably 21 gauge or smaller. (Most 24-gauge catheters allow the delivery of 100 mL/hr.)

Do not use a traditional tourniquet. A blood pressure cuff inflated to 80 to 90 mm Hg is easier on the older client's skin.

Take time to find the most suitable vein. Use strict aseptic technique, because the older client is typically immunocompromised. Do not slap the arm to visualize the client's veins. Use a decreased angle for insertion—usually between 5 and 15 degrees.

Set the flow rate of IV medications, especially antibiotics, to no more than 100 mL7hr; for clients with congestive heart failure or renal failure, set the rate at 50 mL7hr. Use a protective skin preparation before applying a transparent dressing over the IV insertion site; dry gauze pads may be best for clients with tissue-thin skin. Cover the IV dressing with flexible netting. If netting is unavailable, use minimal tape or an elastic bandage to secure the dressing and protect the site; keep the inser­tion site visible at all times.

Do not use circumferential restraints on the extremity with the IV catheter.

Do not use the client's lower extremities for IV insertion, because the circulation may be impaired in the client's legs and feet.

Assess the client's mental status at least every 4 hours. Use pumps, controllers, or burettes to control infusion volume and rate.



Figure I.V. House, a commercially available safety device used for IV site protection, guards the integrity of the older adult's skin while helping to secure the site. (Courtesy I.V. House, Hazelwood, MO.)

be into the chest or neck veins (usually the subclavian, or in­ternal or external jugular vein). The catheters are made of polyurethane or Silastic and may have a single lumen or multiple lumens. The chest and neck vein sites are generally used for short-term therapy. After placement and before it is used for infusions, the catheter's placement must be checked by x-ray examination.


The peripherally inserted central catheter (PICC) is a special type of nontunneled catheter (Figure 14-5). The PICC is cur­rently the only type of central venous catheter for which place­ment falls within the realm of nursing practice. Boards of nurs­ing in every state now recognize the specially trained nurse's ability to safely and efficiently access the client's central ve­nous system with a PICC. Many agencies and regulating boards agree that before a nurse can be considered "PICC competent," he or she must complete a minimum of 8 hours of didactic (classroom) training and perform at least two or three successful PICC placements under the guidance of a preceptor or clinical trainer. Having a PICC placed by a qualified regis­tered nurse (RN) instead of a CVC placed by a physician is less invasive to the client and avoids the surgical risk.

The PICC is appropriate for any setting and for adminis­tration of any IV therapy. PICC line placement is ideal for long-term antibiotic therapy in home care and may be more cost-effective than conventional peripheral catheters (see the Cost of Care box above). As with other direct-insertion catheters, PICCs are available as single- or multiple-lumen devices and require an x-ray study to verify placement before use. According to the INS position paper (1997b), a PICC that is functioning well may remain in place for up to 12 months.


Tunneled central venous catheters include the Broviac, Hickman, Leonard, and Groshong catheters. These central venous catheters (CVCs), named for their developers, are made of silicone or polyurethane. Some of the differences among these catheters relate to their inside diameter, or the gauge of the lumen, and the catheter tip. Before the nurse uses these catheters, the physician confirms the placement of the catheter tip by radiography.

The Broviac catheter is usually a smaller-bore catheter than the Hickman, Leonard, and Groshong catheters. Like the Hickman and Leonard catheters, the Broviac catheter is an open-ended catheter, meaning that it has a tip that is open, similar to that of peripheral venous catheters. The external portions of the Hickman and Broviac catheters have a rein­forced area on each lumen. When the catheter is not being used for infusions, the lumens are clamped at the reinforced area to avoid air embolism.

The Groshong catheter is a closed-ended catheter. Toward the tip of the Groshong catheter on the side, there is a slit-valve that opens out and allows fluid to infuse if there is positive pressure in the catheter. It opens in and allows blood to be as­pirated if there is negative pressure in the catheter. When the pressure in the catheter is neutral, the valve is closed. The Groshong catheter is not supplied with clamps, and the manu­facturer's instructions state that to maintain the integrity of the valve, the catheter should not be clamped. The Groshong tip is available on PICC catheters, as well as on tunneled catheters. The other features of the Broviac, Hickman, and Groshong catheters are similar in design. Each of these catheters is available with one to four lumens. The catheters are usually 19 to 41 inches (42 to 90 cm) long until the physician trims them during insertion. Each has a cuff positioned inside the subcutaneous tunnel. This cuff is designed to rest just inside the tunnel, under the skin. Fibrous tissue develops around the catheter after insertion to secure it in place and produce a physical barrier to the migration of organisms up the tunnel and into the client's bloodstream.


Implanted ports consist of a portal body, a central septum, a reservoir, and a catheter (Figure 14-6). The port is surgically placed in a subcutaneous pocket in the client's trunk. The sur­geon threads the catheter into the central vascular system and positions the tip in the superior vena cava. The catheter is at­tached to the portal body. The distal tip of the catheter is ei­ther open ended or closed ended. The septum is made of self-sealing silicone and is located in either the center or on the side of the portal body. The nurse uses a noncoring needle de­vice to access the system by piercing the skin over the portal body and puncturing the septum of the port.

Dialysis or pheresis catheters may be tunneled or nontun-neled and are available in plastic for short-term needs and in silicone for long-term needs. Dialysis catheters have a much larger lumen than regular central lines and are shorter and less flexible. Being more rigid than other lines allows high blood volumes and rates. A catheter that becomes soft enough to collapse with the dynamics of a high flow rate would be dis­astrous to the dialysis process. Dialysis catheters can be used not only for dialysis but also for intermittent administration of medication. Because of their size, these catheters carry a greater risk for complications. Therefore the physician or an RN with specialized training in dialysis should be consulted before any access procedure.

Maintaining patency of these devices and preventing in­fection of the catheter/tunnel requires diligent care. Using aseptic technique when changing dressings and flushing the catheter on schedule with appropriate flush solution are very important.




 A dual-access implanted port for vein “Collar bone”

A needle puncture through the skin into the port allows drugs, fluids, and blood to be administered. C, For sys­temic drug and fluid delivery, the catheter is placed in the subcla­vian vein with the tip in the superior vena cava. (A courtesy HMP-Horizon Medical Products, Inc., Manchester, GA. Â and Ñ redrawn from Winters, B. [1984]. Implantable vascular devices. Oncology Nursing Forum, 11[6], 25-30.)


Table describes local and systemic complications of pe­ripheral IV therapy. When a CVC is used, insertion-related and postinsertion complications must be prevented or de­tected early).

Nursing care is the key to decreasing the incidence of complications associated with all infusion therapy. A major nursing responsibility when caring for clients receiving infu­sion therapy is prevention, assessment, and management of complications.

Arterial Therapy


Arteries are used for intra-arterial chemotherapy (IAC). Chemotherapy administered arterially allows a high con­centration of drug to be administered to the tumor site be­fore it is diluted in the circulatory system or metabolized by the liver or kidneys. A high drag concentration at the tumor site optimizes cell kill at the tumor site while minimizing systemic side effects. This action is important to clients who are receiving chemotherapy because debilitating systemic side effects often lead to discontinuation of some therapeutic regimens or alteration of others. In addition, enough drug is available systemically to treat undetected micrometastases.

The physician is responsible for placing the arterial catheter. This is usually done as a surgical procedure or as an interventional radiologic procedure. The nurse monitors and maintains the IAC.

The artery selected for encannulation (placement of a catheter) is specific to the diseased organ or structure to be treated. The physician usually prescribes IAC to treat a client's localized inoperable tumor in the liver, head, neck, or bones. Liver tumors are typically treated through the hepatic artery or branches of the celiac artery. The external carotid ar­tery may be used in the treatment of head and neck tumors, and the internal carotid artery may be used in the treatment of brain tumors.

Generally, the duration of the therapy and the number of treatments to be given determine which type of catheter the client will receive. If the client is going to have intermittent therapy for a limited number of times, the physician will likely place a nonpermanent catheter using a radiologic proTABLE 14-3

May be mechanical as a result of insertion technique or not stabi­lizing catheter well; may be chemical as a result of the pH or os-molality of the solution or medication

May be caused by pierc­ing the back of the vein during insertion of the catheter; client may have faulty coag­ulation ability or be taking anticoagulants

Break in aseptic tech­nique during insertion or the handling of sterile equipment

May occur if the needle of an over-the-needle catheter is reinserted into the catheter or if the needle of a through-the-needle catheter is inadver­tently pulled back through the catheter

IV rate slows down; increas­ing edema above the IV insertion site; client may complain of burning and tightness at the IV site.

Client may complain of pain at the IV site; nurse may observe that vein appears red and inflamed along the length; client may spike temperature; vein may become hard and cordlike.

Discolored area of bruising around the IV site; client may complain of pain; area may be swollen.

Site appears red, swollen, and warm; client may complain of tenderness at the site; may observe purulent or malodorous exudate.

Client will experience a de­crease in blood pressure and complain of pain along the vein; pulse be­comes weak, rapid, and thready, and nurse may note cyanosis of the nail beds and circumorally; client may lapse into un­consciousness. If recent, ice may prevent any further seepage into the surrounding tissue; if older, warm moist com­presses will assist with reabsorption of the fluid.

Remove catheter; use warm compresses to relieve pain; adjust infusion solu­tion or admixture to pre­vent further injury.

Remove IV device and ap­ply pressure; see treat­ment for infiltration. 

Remove IV catheter, allow site to bleed for a few seconds, and use 2x2 gauze to express dis­charge; send catheter tip for culture; clean site with antibacterial solution and cover with dry sterile dressing; physician to 4evaluate for septic phlebitis and need for surgical intervention.

Discontinue catheter and apply a tourniquet high on the limb of the catheter site; inspect catheter for any rough edges; an x-ray film is taken to determine the presence of any catheter piece; surgical interven­tion may be necessary.

Stabilize IV catheter well; use smallest catheter that will accomplish the infu­sion; avoid placement over area of flexion; mon­itor site frequently.

Change short-term IV catheter every 72 hr, when infusing medica­tions or solutions with high osmolality, choose large veins; anchor catheters well to avoid movement in vein.

Carefully advance catheter, staying parallel with the client's skin; select small­est catheter that will ac­complish the task.

Use careful technique when inserting IV; change site every 72 hours.

When inserting over-the-needle catheters, never reinsert the needle into the catheter; avoid pulling a through-the-needle catheter back through the needle during insertion.

 Result of poor aseptic technique or contami­nated infusion or if the catheter site is not changed regularly

Infusion of fluids at a rate greater than the client's system can accommodate

Rapid infusion of drugs or bolus infusion, which causes the drug to reach toxic levels quickly

May be a response to tape, cleansing agent, drug, solution, or IV device

Early symptoms include fever, chills, headache, and general malaise; if left untreated, client may experience severe infec­tion, which may lead to vascular collapse and death.

Client may complain of shortness of breath and cough; client's blood pressure is elevated, and there is puffiness around the eyes and edema in dependent areas; client's neck veins may be en­gorged, and nurse may hear moist breath sounds.

Client may complain of lightheadedness or dizzi­ness and chest tightness; nurse may note that client has a flushed face and an irregular pulse; without in­tervention, client may lose consciousness and go into shock and cardiac arrest.

A client having a local reac­tion may exhibit a wheal, redness, or itching at the IV site; in the case of a general reaction, client may complain of itching, running nose, and tear­ing; nurse may note bron-chospasm, wheezing, and a truncal rash; with­out treatment, client may experience anaphylaxis.

Change the entire infusion system from solution to IV device; notify physi­cian, obtain cultures, and administer antibiotics as ordered; if the infusate is the suspected cause, send a specimen to the laboratory for evaluation.

Slow the IV rate and notify physician; raise client to an upright position; moni­tor vital signs and admin­ister oxygen as ordered; administer diuretics as ordered.

Immediately discontinue the drug infusion and hang D5W to keep the vein open; monitor vital signs carefully and notify physi­cian for further treatment orders. Same as for local infection above.

Monitor intake and output carefully and notify physi­cian as soon as an imbal­ance is noticed between the client's intake and output.

Nurse is aware of the ap­propriate infusion rate of medications and adheres to them; use of infusion control devices assists in prevention of speed shock.

Chest pain




Decreased breath sounds

on the affected side Abnormal chest x-ray


Similar to pneumothorax; usually see dyspnea first and then tachycardia

Decreased hemoglobin be­cause of blood pooling

Same as in hemothorax Usually noted on insertion with withdrawal of a milk-like substance

Same as in pneumothorax with absence of vesicular breath sounds and a murmur with a flat sound over the location

Loud churning heard over

the pericardium on aus-

culation Chest pain, dyspnea,

hypoxia Anxiety, tachycardia,


Pulsating of bright red blood from the introducer needle

No blood return

Tingling to sensory motor deficit to complete paralysis

Puncture of the pleural cov­ering of the lung by the introducer on insertion of a direct subclavian ap­proach

Result of puncture or tran-section of the subclavian vein or artery

Transection of the thoracic duct on the left side

Transection of the subcla­vian vein and placement of the catheter into the thoracic cavity

Air is introduced into the central venous system by insertion, tubing changes, or breaking of the catheter

Accessed the artery instead of the vein

Poor IV skills Lack of knowledge Small sclerotic veins Volume deficit Infiltration of local anesthetic

Ineffective cannulation of the vein

Remove catheter or assist

with removal Assess client by monitoring

vital signs, and assess

breath sounds Notify physician immedi­ately if suspected after

insertion Administer oxygen as

ordered Assist with insertion of a

chest tube

Same as for pneumothorax Apply pressure on insertion site after introducer nee­dle and catheter are removed

Same as for pneumothorax

Same as for pneumothorax with removal of the catheter and aspiration of fluid

Place client in lateral Tren-delenburg position on left side

Clamp catheter immediately Notify physician immediately

Remove needle immediately and apply pressure to the site

Secure a pressure dressing for 5-10 min

Good venous assessment

before insertion Pull skin to side of vein to

apply anesthetic

Careful cannulation without probing

If resistance is met on catheter advancement, do not force catheter

Resistance is met when trying to advance the catheter



Catheter has moved from catheters original placement to either the jugular vein or SVC above the right atrium


Catheter rupture

Catheter is broken open and/or apart


     Catheter lumen has be­come narrowed and/or closed as a result of pre­cipitate, blood clot, or fi­brin sheath


        Inflammation of the vein wall


Formation of a blood clot in a vessel within the neck, chest, or arms that oc­curs in the presence of a central venous catheter


        Infection may be localized at the insertion site or in the catheter, or may progress to systemic infection

Ear or neck pain

                            Water heard in the ear Palpitations or arrythmias Inability to irrigate

Fluid leaking

                           Pain or swelling during infusion Reflux of blood into the catheter extension

Infusion stops and/or pump alarm sounds

                      Inability or difficulty administering fluids


Inability or difficulty drawing blood Increased resistance to flushing of the catheter

Pain, redness, slight swelling

May progress to cellulitus and palpable cord or collateral cir­culation

                            Chest pain, earache, or jaw pain

Edema of neck, supraclavicular area, or extremities

                       Edema at puncture site

Jugular distention

                            Collateral circulation on the af­fected side

Redness, warmth, tenderness, swelling at the insertion site


Possible exudate of purulent material

                       Local rash or pustules

Fever, chills, malaise


Nausea and vomiting

                            Elevated urine glucose level

Changes in interthoracic pres­sure related to excessive vomiting or coughing

Using small syringes (<10 mL). Occluded catheter Forceful irrigation Pinch syndrome can cause catheter embolus.

Drug precipitate (calcium, diazepam, and phenytoin are common). Blood clots and fibrin sheath can form with ineffective flushing routine.

Mechanical phlebitis is com­mon with PICC lines and will appear within 7 days after insertion.

Chemical phlebitis may be seen with catheter rupture.

Statis, vessel wall injury, or hypercoagulability.

Failure to maintain sterile tech­nique during catheter inser­tion or care:

- Wet or soiled dressing remain­ing on site

- Immunosuppression

- Contaminated catheter or solution

- Place client in semi-Fowler's position

- Rapidly flush line

- Reposition line by guidewire ex­change (physician)

- Partially withdraw catheter

- Reposition under fluoroscopy (physician)

- Guidewire exchange (physician). Repair damaged segment. Remove catheter

For drug precipitate, use hy­drochloric acid

For blood clot, use thrombolytic enzymes such as urokinase (see procedure for declotting central lines)

Mechanical phlebitis: conserva­tive measures, warm com­presses applied for 20 min qid for approximately 48-72 hr

Mild exercise

Chemical: change catheter and/or medication

Anticoagulant therapy Possible catheter removal

Monitor vital signs closely

Monitor culture site

Redress with sterile technique

Treat systemically with antibi­otics or antifungals, depend­ing on culture results

Blood cultures

Remove catheter cedure in the radiology department. If the client is pre­scribed continuous therapy over a period of weeks or months, the physician will likely place a permanent arterial catheter.


Catheters placed using a radiologic procedure are usually made of a polymer or Teflon. Catheters inserted surgically are usually ports. These ports are similar to those discussed under Central Intravenous Therapy, but the lumen of the catheter is generally smaller.

Whether the physician is placing the catheter surgically or radiologically, the catheter is threaded into the main artery feeding the tumor site. Some clients may have several vessels supplying the tumor site, or it may not be possible to infuse the target vessel without infusing adjacent vessels. In either situation, the physician may elect to occlude vessels by in­jecting Gelfoam or metal coils through the catheter. Blocking the arteries in this way may cause the tumor to shrink without the chemotherapy. The body absorbs the Gelfoam within a few days, re-establishing circulation. Metal coils provide per­manent vascular occlusion. Until the client's body establishes collateral circulation, he or she may complain of general malaise and pain in the area occluded.


Catheter displacement is the most common problem associ­ated with temporary arterial catheters. Clients whose catheters become displaced may exhibit dyspepsia, exces­sive nausea and vomiting or diarrhea, gastric pain from pep­tic ulcers, or abdominal pain from pancreatitis. Management may include stopping the chemotherapy infusion temporar­ily until the client can be treated with antiemetics and antacids.

A subintimal tear is the separation of the intima and media of the arterial wall, resulting from manipulation during place­ment. The client may complain of pain near the target organ during the infusion. Subintimal tears can delay therapy for weeks until the tear heals.

Arterial occlusion may occur with either a radiologically placed catheter or a surgically placed catheter. The physician may order heparin to be added to the chemotherapy infusion or have the client take 650 mg of aspirin twice a day to avoid catheter occlusion. Even with this prophylactic therapy, the nurse may observe a transient or permanent loss or decrease in the pulse distal to the insertion site. The nurse must report this symptom immediately. If the physician diagnoses the client as having an embolism, the physician will either re­move the catheter or use the fibrolytic agent urokinase (Ab-bokinase) in an attempt to lyse the clot.

Intraperitoneal Therapy


Intraperitoneal (IP) therapy is the administration of thera­peutic agents (cytotoxic drugs and biologic response modi­fiers [BRMs]) into the peritoneal cavity. IP therapy is usually prescribed for the treatment of tumors that are confined to the peritoneal cavity. Carcinomas of the ovaries and fallopian tubes generally meet this criterion.

There are three categories of IP catheters generally available: temporary indwelling catheters, semipermanent indwelling external catheters, and implantable IP ports. The placement of an IP catheter is a physician responsibility, but the adminis­tration and monitoring of the therapeutic agent is generally a nursing responsibility.

Administration of the IP therapy includes three phases: the instillation phase, the dwell phase, and the drain phase. The peritoneal cavity generally acts as a tumor refuge, separated from the bloodstream by a cellular enclosure similar to the blood-brain barrier. This enclosure protects IP tumors from systemically infused chemotherapeutic agents. IP therapy, like intra-arterial therapy, allows for the administration of an-tineoplastic agents directly to the tumor sites. This enhances the drug's penetration and cell kill while restricting systemic effects.

Temporary indwelling catheters include temporary peri­toneal dialysis catheters, paracentesis catheters, and 16- or 18-gauge over-the-needle IV catheters. Semipermanent in­dwelling external catheters include the Tenckhoff, Gore-Tex, and column-disk catheters. IP implanted ports are similar to IV and arterial ports, but the portal body and the catheter di­ameter are larger.

Temporary indwelling catheters may be inserted and re­moved at the bedside. Clients receiving a temporary in­dwelling catheter benefit from having a new catheter inserted at the time of each therapy. Complications such as the devel­opment of fibrous sheaths and infection do not plague these clients.

Semipermanent indwelling external catheters and IP im­planted ports are inserted in the operating room. Both of these catheters are appropriate for longer-term therapy.


Exit site infection, indicated by redness, tenderness, and warmth of the tissue around the catheter, is more often seen in clients who have a Tenckhoff catheter. Frequent dressing changes at the exit site using sterile technique can help pre­vent this complication.

Microbial peritonitis is inflammation of the peritoneal membranes from the invasion of microorganisms. The client may experience a fever and complain of abdominal pain. There may be abdominal rigidity and rebound tenderness. This condition is preventable with strict aseptic technique in the handling of all equipment and infusion supplies. Manage­ment includes antimicrobial therapy either intravenously or intraperitoneally.

Chemical peritonitis is irritation of the peritoneal mem­branes by the chemotherapeutic agent. The client may com­plain of symptoms similar to those experienced with micro­bial peritonitis. If chemical peritonitis is severe, it may delay further treatment.

Occlusion is the inability to administer fluids into the peri­toneum or withdraw fluid from the peritoneum. Occlusion is caused by the formation of fibrous sheaths or fibrin clots or plugs inside the catheter or around the tip. It may also be caused by compartmentalization of fluid due to adhesions or to twisting, kinking, or displacement of the catheter. Manage­ment may include the infusion of a lysing agent such as uroki­nase. If the catheter is an indwelling external catheter, the physician may attempt to dislodge the clot by using a push-pull method with a syringe and 0.9% normal saline solution (NSS). Sometimes the physician may insert a sterile stylet through an external catheter to dislodge the catheter.

Subcutaneous Therapy


Subcutaneous (SC) therapy involves the insertion of a small-gauge needle into the client's subcutaneous tissue and the continuous administration of isotonic fluids or medica­tions at a slow rate of usually 1 mL/min. Continuous subcuta­neous infusion (CSQI) has been used as an alternative to IV therapy, primarily for fluid replacement, and was referred to as hypodermoclysis or clysis in the 1950s and 1960s. Today, SC fluid replacement is again being referred to as hypoder­moclysis in the health care literature.

SC infusion was virtually abandoned after the develop­ment of IV infusion. Recently it has been found to be benefi­cial primarily for older persons requiring short-term fluid ad­ministration to correct dehydration (Donnelly, 1999).

Other criteria for hypodermoclysis include that the client (Brown & Worobec, 2000):

Needs less than 3000 mL of fluid per day

Has no bleeding or coagulation problems

Has intact skin sites available

To facilitate fluid absorption, an enzyme such as hyaluron-idase (Wydase) may be mixed with the infusion fluid. Because this enzyme can cause an allergic reaction, a test dose is given intradermally. If the enzyme is not used, the infusion may not be well absorbed and redness at the insertion site is more likely (Brown & Worobec, 2000).


The nurse begins CSQI by cleansing any area on the client's body that has sufficient subcutaneous tissue. Such sites in­clude the inner thigh and abdomen. The nurse primes the at­tached tubing and, gently pinching an area of approximately 2     inches (1 cm), inserts a small-gauge needle. Appropriate needle choices for CSQI include a 25- to 27-gauge butterfly needle or a Sub-Q-Set. A butterfly needle is inserted at a 35-to 45-degree angle, whereas a Sub-Q-Set is inserted at a 90-degree angle. After anchoring the needle, the nurse covers thesite with a transparent dressing.

Clients who benefit from CSQI are those who:

   Are unable to take oral medications (e.g., have dysphagia, gastrointestinal obstruction, or malabsorption) Have intractable nausea and vomiting

   Require parenteral medication but have poor venous access. Require subcutaneous injections for longer than 48 hours

     Have a need for prolonged use of parenteral medication

     Need a continuous level of medication to control pain

     Cannot cope with the expense of IV therapy


Insertion site irritation, evidenced by erythema, heat, or swelling, is a local complication of CSQI. Rotation of the SC site approximately every 5 to 7 days usually helps prevent this problem.

Other complications include pooling of the fluid at the in­sertion site and an uneven fluid drip rate. Both of these prob­lems may be resolved by restarting the infusion in another lo­cation. An infusion pump may also be used.

Another possible complication is fluid overload. This problem can be prevented if the fluid rate is no more than 80 mL/hr. If signs of fluid overload occur, the infusion should be discontinued.

Central Nervous System Therapy

Central nervous system therapy involves the infusion of med­ications into the epidural space or intrathecally.

 Epidural Therapy

In epidural therapy, the physician or specially trained nurse administers medication into the epidural space of the spinal column. Located between the wall of the vertebral canal and the dura mater, the epidural space consists of fat, connective tissue, and blood vessels that protect the spinal cord. The most common uses of epidural therapy are to re­lieve postoperative or chronic pain and the pain associated with labor and delivery. The physician, usually an anesthesi­ologist or neurosurgeon, initiates epidural therapy. There are four major categories of catheters used for epidural therapy. The choice of one over the other depends on the purpose and duration of the therapy. Table 14-5 describes each type and lists their indications.

Opioids administered epidurally slowly diffuse across the dura mater to the dorsal horn of the spinal cord. They lock onto receptors and block pain impulses from ascending to the brain. The client receives pain relief from the level of the in­jection caudally (toward the toes). Local anesthetics adminis­tered epidurally work on the sensory nerve roots in the epidural space to block pain impulses. The physician admin­isters the first dose of medication; then, depending on state law, the type of medication, and facility policies, nurses trained in epidural therapy may administer subsequent doses. In all cases it is a nursing responsibility to monitor the client receiving epidural therapy for any signs of complications. In some states, specially trained nurses are permitted to remove the catheter when therapy is discontinued.

Complications associated with epidural therapy are usually caused by the medications administered. Table 14-6 outlines medication-related complications that may occur with the ad­ministration of epidural opiates and local anesthetics.

Intrathecal Therapy

Intrathecal therapy provides a means of administering chemotherapy, pain medication, or antibiotics directly into the ventricular cerebrospinal fluid (CSF) of clients who suffer from CSF malignancies or metastases, chronic cancer pain, or CSF infections. Some medications used to treat CSF neoplasms, such as methotrexate and cytarabine, cannot be administered intravenously because they cannot cross the blood-brain bar­rier. Others must be administered in very large doses to cross this natural protective mechanism. It may not be possible to ad­minister large doses of chemotherapeutic agents intravenously because of the severe systemic side effects associated with them. Administration of medications via the intrathecal route

Flexible nylon catheter threaded through a spinal needle into the epidural space. The external end has a standard female Luer-Lok hub, which accepts an intermittent injection cap.

A Silastic catheter tunneled from the point where it exits the spine to a point on the client's trunk, usually on the side just above the waist. Like a tunneled central venous catheter, the catheter has a Dacron cuff that prevents the migration of microorganisms along the catheter into the epidural space.

Appears identical to a venous or arterial port. The surgeon places the portal body over a bony prominence, such as the spine itself, or one of the client's lower ribs.

Consists of a catheter whose tip sits in the epidural space at the appropriate level. The catheter is tunneled subcutaneously and attached to the pump, which is usu­ally implanted in a pocket in the abdomi­nal region of the chest wall. As described earlier, the medication is in the pump's reservoir. Temporary pain relief postoperatively or during labor and delivery. For pain control in clients with end-stage cancer or a temporary measure to determine if the client with chronic pain will receive relief with epidural therapy.

A more permanent catheter indicated for clients in whom epidural therapy has proved to be effective and who have a life expectancy of weeks to months.

Indicated for clients who respond to epidural therapy and have a life ex­pectancy of months to years. Another indication is the client who is confused and repeatedly pulls out his or her sub­cutaneous tunneled catheter.

The most expensive method of administer­ing epidural therapy. Indicated for clients who will require therapy for a long period (chronic pain) and who have a life expectancy of months to years. No postural hypotension Minor changes in heart rate

If occurs, may be early at 1 -2 hours due to systemic absorption or late after dose at 6-24 hours due to migration to brain

Sedation may be marked.

Convulsions absent

Urinary retention


Nausea and vomiting

Epidural Local Anesthetics

Postural hypotension Decrease in heart rate

Usually unimpaired

Sedation absent to mild

Convulsions possible due to rapid vascular

absorption Sensory losses Motor weakness Urinary retention Pruritus rarely occurs Nausea and vomiting rarely occurs eliminates this problem, since the medication is administered directly into the CSF.

The Ommaya reservoir is the catheter commonly used for intrathecal therapy. A neurosurgeon is usually responsible for the placement of the catheter in the operating room under strict asepsis. The Ommaya reservoir consists of two pieces: a mushroom-shaped self-sealing dome made of silicone and a catheter that attaches to the dome. The tip of the catheter is placed in one of the lateral ventricles. The reservoir is at­tached and placed beneath a flap in the client's scalp. Some models of the reservoir have a side outlet tube that can be used as a shunt to remove excess CSF in the client with in­creased intracranial pressure. The physician, or in some cases the chemotherapy nurse, administers the medication by in­serting a needle through the skin into the Ommaya dome. Af­ter removing an amount of CSF equal to the volume of the medication to be administered, the physician slowly injects the medication. The physician removes the needle and pumps the dome of the reservoir to release the medication into the catheter for delivery to the CSF. The nurse is responsible for monitoring the client for any complications.


Infection in the client receiving either epidural or intrathecal therapy is the result of a lack of asepsis when handling the medication or during the administration. There may be local evidence of infection, such as redness or swelling at the catheter exit site or over the Ommaya reservoir. The client may also exhibit neurologic and systemic signs of infection, such as headache, stiff neck, or temperature higher than 101° F (38.3° C). The nurse may observe cloudy CSF, indicating a proliferation of white blood cells in clients undergoing in-trathecal therapy.

Misplacement or migration of the catheter may occur at the time of placement, or the catheter may move or become kinked after placement. In clients with epidural catheters, when the nurse aspirates to check placement, he or she may observe clear, free-flowing fluid (CSF), indicating that the catheter has migrated into the subarachnoid space, or the nurse may withdraw blood, indicating that the catheter has migrated into a blood vessel. An inadvertent administration of local anesthetics directly into the subarachnoid space may lead to high or total spinal block and convulsions or cardiovascular depression. Clients who mistakenly receive local anesthetics intravenously may experience toxic reac­tions with convulsions. In the client receiving intrathecal therapy via an Ommaya reservoir, the physician may ob­serve no or very slow filling when "pumping" the dome. The client may exhibit new neurologic symptoms if the catheter has migrated.

Intraosseous Therapy


Intraosseous (IO) therapy is a previously used and re-emerging method of gaining access to the vascular system. IO therapy is primarily used in critically injured clients with vas­cular collapse. However, a number of research studies have confirmed that it is a viable option for other clients requiring infusion therapy. In some states, prehospital providers such as emergency medical technicians (EMTs) and paramedics, as well as trained clinicians in trauma centers and emergency de­partments, initiate IO therapy.

IO therapy allows access to the rich vascular network lo­cated in the long bones. This vascular network is more prominent in children younger than 6 years of age. Victims of trauma, burns, cardiac arrest, and other life-threatening conditions benefit from IO therapy, because often clinicians are unable to access these clients' vascular systems using traditional methods such as IV therapy. Research indicates that absorption rates of large-volume parenteral (LVP) infu­sions and medications administered via the IO route are similar to those achieved with peripheral or central venous administration.


Theoretically, any needle may be used to provide IO therapy and access the medullary space. However, the following cri­teria make some needles superior to others for IO therapy: A needle with a removable stylet that screws into the can-nula to keep the needle from retracting during insertion A short shaft to eliminate accidental dislodgment after placement

An adjustable guard to stabilize the needle at skin level Graduations along the needle to guide the practitioner during insertiont Complications

Improper needle placement is the most common complication of IO therapy. An accumulation of fluid under the skin at ei­ther the insertion site or on the other side of the limb indicates that the needle is either not far enough in to penetrate the bone marrow or is too far into the limb and has protruded through the other side of the shaft.

Needle obstruction occurs when the puncture has been ac­complished but there has been a delay in flushing. This delay may cause the needle to become clotted with bone marrow.

Osteomyelitis is a very serious complication of IO therapy. This infection in the bone tissue is unusual, but when it oc­curs, it is generally due to the cannula's being left in place too long or to the client's having had a source of infection before the needle's insertion.

An embolus is a complication of any orthopedic proce­dure, and IO therapy is no exception. An embolus occurs when a bone fragment or fat enters the peripheral circulation. The client exhibits classic symptoms of respiratory distress, tachycardia, hypertension, tachypnea, fever, and petechiae. Laboratory data indicate an increased sedimentation rate and decreased red blood cell and platelet counts.

Compartment syndrome is a condition in which increased tissue pressure in a confined anatomic space causes decreased blood flow to the area. The decreased circulation to the area leads to hypoxia and pain in the area. This is very rare in IO therapy, but the nurse should monitor the site of the IO ther­apy carefully and alert the physician promptly if the client ex­hibits any signs of decreased circulation to the limb, such as coolness, swelling, mottling, or discoloration. Without im­provement in perfusion to the limb, the client may require am­putation of the limb.