Біохімія як наука: біомолекули; метаболічні шляхи

БІОХІМІЯ ЯК НАУКА: БІОМОЛЕКУЛИ; МЕТАБОЛІЧНІ ШЛЯХИ. БУДОВА І ВЛАСТИВОСТІ ФЕРМЕНТІВ. МЕХАНІЗМ ДІЇ ФЕРМЕНТІВ. ІЗОФЕРМЕНТИ, КЛАСИФІКАЦІЯ ФЕРМЕНТІВ. РЕГУЛЯЦІЯ АКТИВНОСТІ ФЕРМЕНТІВ. ФЕРМЕНТОДІАГНОСТИКА, ФЕРМЕНТОПАТІЇ. ВСТУП ДО ОБМІНУ РЕЧОВИН. СПЕЦИФІЧНІ ТА ЗАГАЛЬНІ ШЛЯХИ ПЕРЕТВОРЕННЯ ВУГЛЕВОДІВ, ЛІПІДІВ І БІЛКІВ.

 

Метою біохімії, в тому числі й медичної хімії, є вивчення хімічного складу, хімічної структури і властивостей складових компонентів тканин та органів, перетворення речовин і енергії в здоровому та хворому орга­нізмах. Протягом останніх 20-30 років біохімія розкрила механізми дії ферментів, енергозабезпечення, генетичної спадковості та спадкових захворювань, що сприяло віднесенню її в ряд фундаментальних медико-біологічних наук. В.І. Вернадський, перший президент АН України, вважає, що біохімія – це наука про структуру і поведінку живої речовини.

Виникнення біологічної хімії як науки знаменує собою значний поступ вперед у вивченні живої природи. Він зумовлений тим, що в кінці ХІХ ст. завдяки розвитку техніки, фізики, фізіології, хімії було відкрито багато фізіологічних процесів, в основі яких лежать хімічні перетворення. Пояснити ці процеси могла тільки наука, що спиралась на закони хімії та методичні підходи, характерні для живих організмів. Ні загальна, ні органічна хімія зробити це своїми методами і підходами не змогли. Отже, біологічна хімія є стиковою (суміжною) наукою, яка зародилась від схрещення хімії і біології.

Для медицини біохімія стала головною фундаментальною науковою дисципліною, що на молекулярному рівні пояснює всі біологічні процеси в нормі й при захворюваннях. Вона лежить в основі сучасної діагностики, встановлення прогнозу перебігу захворювання та лікування хворих. Завдяки біохімії було розкрито причини і механізми таких захворювань, як цукровий і нецукровий діабети, серповидноклітинна анемія, глікогенози, колагенози тощо (так званих молекулярних хвороб). Жоден клініцист у своїй практичній діяльності не обходиться без біохімічних обстежень хворих.

Студенту-медику біохімія не тільки допомагає зрозуміти молекулярні основи і механізми фізіологічних та патологічних процесів, але і сприяє формуванню клінічного мислення, виробленню наукового світогляду, демонструючи на конкретних прикладах, що в основі біологічних процесів здорового і хворого організмів лежать зміни молекулярних структур або хімічних чи енергетичних перетворень.

 Об'єктом біохімії стало широке коло питань, що стосуються різних проявів життя. Тому розрізняють біохімію людини, тварин, рослин, вірусів, мікроорганізмів, технічну, радіаційну тощо.

Ферменти – біологічні каталізатори

 Одна з основних відмінностей між живим і неживим світом полягає в тому, що постійність неживого грунтується на його хімічній незмінності, тоді як стабільність і збереження живого базується на безперервних хімічних змінах, що відбуваються в ньому.

Хімічні процеси в організмі каталізуються особливими речовинами (біокаталізаторами), що називаються ферментами, або ензимами. Вчення про ферменти – одна з найважливіших проблем сучасної біології і біохімії. Зараз встановлено, що немає жодного процесу в організмі, який би відбувався без участі ферментів. Травлення, енергозабезпечення, побудова структурних компонентів клітин і тканин, ріст, розмноження, м'язове скорочення, згортання крові пов'язані з роботою ферментів.

Термін фермент уперше ввів у науку голландський учений ХVІІ ст. Ван-Гельмонт для речовин, що стимулюють перетворення виноградного соку у вино. При цьому відбувається виділення міхурців газу, що нагадує кипіння (з лат. fermentatio – кипіння, бродіння). Цей процес назвали ферментацією, а речовини, що його викликають – ферментами. Дещо пізніше був запропонований ще один термін – ензими (від грец. en zyme – в дріжджах). Зараз обидва ці терміни вживаються як синоніми. Учення про ферменти виділилось у самостійну науку – ензимологію або ферментологію. У 30-х роках нашого століття ферменти вперше були отримані в кристалічному вигляді (Самнер). Зараз нараховується понад 2000 ферментів, встановлена їх природа, для деяких і структура, для багатьох – існування різних молекулярних форм-ізоферментів.

Хімічна природа ферментів

 За хімічною природою ферменти – це білки, що проявляють каталітичні властивості, тобто вони прискорюють перебіг різних хімічних процесів, які відбуваються в живому організмі. Ферментам притаманні всі фізико-хімічні властивості білків: висока молекулярна маса, розщеплення до амінокислот під час гідролізу, утворення колоїдоподібних розчинів; вони не стійкі до впливу високих температур та солей важких металів, проявляють антигенні властивості, піддаються фракціонуванню. Як і білки, ферменти поділяються на прості й складні. Прості, або однокомпонентні, ферменти містять у своєму складі тільки амінокислоти. Наприклад, пепсин, уреаза, РНКаза та інші. Більшість ферментів є двокомпонентними, тобто складаються з білкової і небілкової (простетичної) частин. Їх називають ще голоферментами, а їх складові, відповідно, апоферментами (білкова частина) і простетичною групою, або кофактором (небілкова частина ферменту);

голофермент Þ апофермент + простетична група

Простетична група міцно і постійно зв'язана з апоферментом. Якщо небілкова частина ферменту зв'язана з апоферментом непостійно, тобто знаходиться в дисоційованому стані й приєднується до апоферменту тільки під час каталітичного процесу, то її називають коферментом, іноді – кофактором. Усе ж термін кофактор більше вживається в тих випадках, коли небілкова частина ферменту представлена якимось мікроелементом (металом), якому притаманна ще й функція активатора. Загалом, небілкова частина складного ферменту – низькомолекулярна і термостабільна, тоді як білкова – високомолекулярна і термолабільна. Важливо, що апофермент і кофермент проявляють ферментативні властивості тільки при поєднанні їх.

Коферменти, або коензими

 Кофермент, або коензим, бере участь у перетворенні субстрату, тоді як апофермент вказує на тип реакції. Коферментом можуть виступати різні за природою низькомолекулярні органічні, а також неорганічні речовини (метали), що здатні зв'язуватись із субстратом і видозмінювати його.

Вітаміни як коферменти

Найчастіше коферментами виступають вітаміни та їх похідні. Наприклад, пірофосфорний ефір вітаміну В1 – ТПФ – є коферментом піруватдегідрогенази, альфа-кетоглутаратдегідрогенази та транскетолази; В1 – ТПФ – є коферментом піруватдегідрогенази похідні вітаміну В2 – ФМН, ФАД входять до складу оксидно-відновних ферментів. Сюди ж належать і похідні вітаміну В5 – НАД і НАДФ.

Коферментом переамінування та декарбоксилювання амінокислот є похідні вітаміну В6 – піридоксальфосфат. Вітамін В3 є основою для утво­рення коферменту А (кофермент ацилювання) та пантотеїнфосфату – коферменту ацилпереносного білка синтезу жирних кислот. Вітамін В10 в організмі перетворюється на кофермент ТГФК, що бере участь у перенесенні одновуглецевих фрагментів. Із вітаміну В12 утворюється два коферменти – метилкобаламін та дезоксиаденозил-кобаламін, які разом із ТГФК переносять і видозмінюють одновуглецеві фрагменти під час синтезу нуклеїнових кислот у кровотворних органах.

Вітамін Н (біотин) утворює активний кофермент – карбоксибіотин, що бере участь у процесах карбоксилювання. Роль коферментів можуть відігравати і вітаміноподібні речовини – ліпоєва кислота, убіхінон, карнітин та інші. Перша з них входить до складу піруватдегідрогеназного комплексу і бере участь в оксидно-відновному перетворенні альфа-кетокислот. Убіхінон служить проміжним переносником електронів і Н+ в дихальному ланцюзі, а карнітин входить як кофермент до складу трансфераз, що переносять залишки жирних кислот через мітохондріальну мембрану.

Нуклеотидні коферменти

Найчастіше коферментами виступають нуклеозиддифосфати, рідше– нуклеозидмонофосфати. У складі коферментів нуклеозиддифосфати зв'язуються з вуглеводами, ліпідами, амінокислотами тощо. Реакції, в яких беруть участь нуклеотидні коферменти, зводяться до перетворення субстрату в молекулі коферменту. Наприклад, перетворення УДФ-глюкози в УДФ-галактозу (стереоізомеризація). Нуклеотидні коферменти можуть також виступати в ролі донорів субстратів у реакціях переносу груп. Так, УДФ-глюкоза є донором глюкози для біосинтезу глікогену, УДФ-глюкуронова кислота – донор залишку глюкуронової кислоти в реакціях кон'югації (наприклад, білірубіну). ЦДФ-холін може служити донором холіну під час біосинтезу холінфосфатидів.

Порфіринові коферменти

Ці коферменти за своєю структурою подібні або навіть тотожні гему в гемоглобіні. Вони містять іони металів, зокрема заліза, які можуть змінювати свою валентність (Fe+2  Fe+3) і за рахунок цього брати участь у перенесенні електронів під час окисно-відновних процесів. Порфіринові коферменти входять до складу таких ферментів, як цитохроми (b, с, а1, а3), каталаза, пероксидаза та ін.

Коферменти-метали або металовмісні комплекси

Значна кількість ферментів для своєї дії потребує наявності металів. У таких ферментах метали беруть участь в окисно-відновних процесах або відповідають за утворення зв'язку між ферментом і субстратом. Іноді важко з'ясувати, чи даний метал або його іон входить до складу ферменту, чи виконує тільки роль активатора ферменту. В останньому випадку фермент може каталізувати реакцію і без металу. Ферменти, що містять у своєму складі метали, без них не будуть проявляти хімічної активності. Зараз встановлено, що більш ніж 30 % із відомих ферментів є металовмісними або металозалежними. Іон металу може входити в активний центр ферменту або бути зв'язаним із залишками амінокислот апоферменту, що розміщені на певній відстані від активного центру. Крім участі в окисно-відновних процесах, про що сказано вище, метали сприяють формуванню вищих структур апоферменту, які також є необхідними для функ­ціонування ферменту. Ці структури стабі­лізуються шляхом утворення сольових містків між іонами металів і карбоксильними групами амінокислот. Такі функції здебільшого виконують метали постійної валентності. Наприклад, іони кальцію стабілізують альфа-амілазу, іони цинку– алкогольдегідрогеназу (при відсутності цинку остання дисоціює на субодиниці й втрачає активність).

Коферменти-фосфати вуглеводів

Коферментами можуть бути і деякі фосфати вуглеводів. Наприклад, 2,3-дифосфогліцерат є коферментом фосфогліцеромутази, що перетворює під час гліколізу 3-фосфогліцерат на 2-фосфогліцерат. Для деяких ферментів роль коферменту можуть виконувати пептиди. Зокрема, трипептид глутатіон (глутамілцистеїнілгліцин), що може знаходитись у відновленій або окисненій формі (HS-SH- або -S-S-), виконує функцію коферменту для багатьох оксидоредуктаз, наприклад глутатіонпероксидази.

Структурно-функціональні особливості ферментів

Більшість ферментів має чотири рівні структурної організації (первинну, вторинну, третинну і четвертинну), тобто є олігомерними білками, що складаються із протомерів. Кожна із субодиниць або окремі їх частини відіграють певну роль у процесі функціонування ферменту. Прості (однокомпонентні) ферменти здійснюють ферментативне перетворення субстрату з участю власне білкової молекули. Безпосередню участь у реакції бере не весь поліпептидний ланцюг ферменту, а тільки незначна його частина, що близько прилягає до субстрату. У ферментативну реакцію включається тільки декілька залишків амінокислот. Ці залишки можуть розташовуватися в поліпептидному ланцюзі як поруч, так і далеко один від одного, але просторово вони повинні бути досить зближені.

Та частина молекули ферменту, яка з'єднується із субстратом, називається активним центром ферменту. Активний центр відповідає за специфічну спорідненість ферменту із субстратом, утворення ферментосубстратного комплексу і каталітичне перетворення субстрату. В активному центрі ферменту умовно розрізняють так звану каталітичну ділянку, де відбувається каталітичне перетворення субстрату, і контактну, або якірну ділянку, що зв'язує фермент із субстратом. За утворення активного центру ферменту, як і за його каталітичну дію, відповідає третинна структура білкової молекули. У складі активного центру простого ферменту знаходиться приблизно 15 залишків амінокислот. Ферменти можуть мати 1, 2, 3 і більше активних центрів, що залежить від кількості протомерів (субодиниць), які входять у його структуру.

Крім активних центрів, у ферментах можуть бути ще так звані алостеричні центри (від грец. алос – інший, другий; стереос – просторовий, структурний). Алостеричні центри служать місцем впливу на фермент різних регуляторних чинників, тому їх ще називають регуляторними центрами, а речовини, що взаємодіють з алостеричним центром, отримали назву ефекторів.

Ізоферменти (ізоензими)

Ферменти, як і всі інші білки, характеризуються молекулярною гетерогенністю. Зокрема, ті з них, що побудовані з декількох субодиниць, можуть існувати в різних молекулярних формах, утворюючи цілі сімейства ферментів. Такі форми зустрічаються в різних тканинах організму і навіть усередині однієї клітини. Наприклад, лактатдегідрогеназа (ЛДГ) утворювала від однієї до п'яти забарвлених смуг, залежно від виду тканини. Отже, в різних тканинах є по декілька молекулярних форм ЛДГ, які діють на один і той самий субстрат, але відрізняються між собою електрофоретичною рухомістю. Такі ферменти, що каталізують однакову реакцію і знаходяться в різних тканинах, але відрізняються між собою деякими фізико-хімічними властивостями, наприклад електрофоретичною рухомістю, молекулярною активністю, стабільністю, називаються ізоферментами, або ізоензимами.

 В основі цих відмінностей знаходиться генетично зумовлена різниця їх первинної структури. На електрофореграмі ЛДГ виявляється 5 ізоформ, кожна з яких містить по 4 субодиниці, але двох різних типів, які умовно позначають "Н"-тип (від heart – серце) і "М"-тип (від muscle – м'яз). Оскільки Н-субодиниці несуть більш виражений від'ємний заряд за умов електрофорезу (рН=8,4), ніж субодиниці М, вони з більшою швидкістю рухаються до анода і на фореграмі розташовуються найдалі від лінії старту. З аналогічної причини ізоферменти, що містять переважно М-протомери, рухаються з малою швидкістю в електричному полі й знаходяться біля катода. Усі інші ізоферменти, що складаються з М- і Н‑субодиниць, займають проміжні місця. Таким чином, ЛДГ має 5 ізо­форм, кожна з яких складається з таких протомерів:

ЛДГ14, ЛДГ2=МН3, ЛДГ32Н2, ЛДГ43Н, ЛДГ54.

Характерно, що кожна тканина в нормі має своє співвідношення форм, свій ізоферментний спектр ЛДГ. Вивчення ізоферментного спектра широко використовується в клініці для диференціальної діагностики органічних і функціональних уражень органів і тканин, а також встановлення топографії патологічного процесу. Ізоферменти відіграють важливу роль у регуляції ферментативної активності, а також у процесі розвитку і диференціації клітин.

Функціональні ферментні системи

У функціональному відношенні ферменти взаємодоповнюють дію одні одних. Хімічні сполуки іноді під час перетворень переходять через довгі ланцюги реакцій, в яких беруть участь багато ферментів. Нерідко в таких численних перетвореннях продукти першої реакції служать субстратом для наступної. Сукупність таких реакцій створює поняття про так звані метаболічні шляхи, що характеризують перетворення вуглеводів, жирних кислот, кетокислот тощо. Ферменти, що функ­ціонально пов'язані між собою при перетворенні певних субстратів і які розміщені в одних і тих самих органелах клітини, об'єднуються під поняттям функціональні ферментні системи, або надмолекулярні ферментні асоціації. Прикладом таких систем можуть бути ферменти, що беруть участь у розщепленні глюкози до піровиноградної або молочної кислоти. Сюди відносять і ферменти, що окиснюють жирні кислоти в так званому циклі Кноопа до ацетил-КоА. Кожна ланка в цих ланцюгах перетворень каталізується певним ферментом, а зв'язок між сусідніми реакціями реалізується через проміжні метаболіти.

Окремі ферментні системи асоційовані між собою не тільки функціонально, але і структурно. До них можна віднести, наприклад, поліферментний комплекс піруватдегідрогенази, що включає в себе декілька ферментів, які через декілька стадій здійснюють окиснення піровиноградної кислоти.  Подібною є і система синтезу жирних кислот, до якої входять сім структурно об'єднаних ферментів, що виконують спіль­ну функцію – синтез жирних кислот.

Властивості ферментів як каталізаторів

 Ферменти мають ряд властивостей, подібних до небіологічних каталізаторів, але одночасно і відрізняються від них. Спільними для всіх видів каталізаторів є:

1. Вони пришвидшують тільки ті реакції, які можливі з точки зору термодинаміки, тобто ті процеси, що йдуть у напрямку термодинамічної рівноваги, але з малою швидкістю.

2. Вони не змінюють напрямку реакції.

3. Каталізатори збільшують швидкість наближення системи до термодинамічної рівноваги, не змінюючи при цьому точки рівноваги.

4. Відносно не змінюються після реакції, тобто вивільняються і знову можуть реагувати з наступними молекулами субстрату.

5. Усі каталізатори діють у відносно малих концентраціях.

Разом із тим, ферменти як білкові структури мають властивості, від­мінні від властивостей каталізаторів неорганічних. Що це за властивості? Для ферментів характерні: специфічність, чутливість до дії сторонніх чин­ників, залежність дії від рН і t°, ферментам, на противагу іншим каталі­заторам, притаманна значно вища каталітична активність. Розглянемо ці властивості.

Специфічність дії ферментів

Специфічність є характерною рисою, що відрізняє ферменти від усіх інших небіологічних каталізаторів. Кожен фермент діє на певний субстрат або на певну групу близьких за структурою субстратів чи на певний тип зв'язку в молекулі. Висока специфічність дії ферментів зумовлена конформаційною й електростатичною комплементарністю між молекулами субстрату і ферменту, а також особливістю структури активного центру ферменту, що забезпечує високу спорідненість із субстратом і вибірковість перебігу однієї якоїсь реакції серед багатьох інших, які здійснюються в клітині. Ферменти можуть проявляти відносну (групову), абсолютну та просторову, або стереоспецифічність.

Залежність швидкості ферментативної реакції від температури

Підвищення температури завжди збільшує швидкість хімічних реакцій, зокрема ферментативних. Як показник зростання швидкості реакції використовують температурний коефіцієнт Ван-Гофа Q10, що вказує на зростання швидкості реакції при підвищенні температури на 10 °С. Оптимальні значення температури для більшості ферментів знаходяться в межах 20-40 °С. Сумарна швидкість ферментативної реакції при зміні температури середовища являє собою результуючу від складання двох швидкостей – зростання швидкості у відповідь на підвищення температури і зниження швидкості як функції денатурації білка-ферменту. Сумація цих двох швидкостей для більшості ферментів теплокровних істот дає найбільше значення швидкості при температурі 37-40 С.

Температура, при якій швидкість ферментативної реакції максимальна, називається температурним оптимумом

Низькі температури також впливають на активність ферментів, але на противагу високим температурам, вони інгібують їх дію, не руйнуючи структури. Перенесення ферментів із низьких температур в оптимальні повністю (в більшості випадків) відновлює їх активність. Цю властивість застосовують у біології і медицині. Охолодження біологічних рідин, тканин, органів використовують для пригнічення в них мета­болічних процесів і попередження автокаталітичного розщеплення.

Залежність активності ферментів від рН середовища

Значення рН, при якому активність ферменту найвища, називається рН-оптимумом ферменту. Звичайно ферменти найактивніші в межах вузької зони рН, яка для більшості з них знаходиться в межах рН 6‑8. Ряд внутрішньоклітинних фермен­тів найкраще функціонує у нейтраль­ному середовищі. Разом із тим, для ферментів шлунково-киш­кового тракту рН‑оптимум може знаходитись у зоні від нейтрального до сильно кислого і лужного сере­довищ. Так, пепсин має оптимум рН 1,5‑2,5, трипсин – рН 8,0-9,0. Для виявлення залежності активності ферменту від концентрації водневих іонів експерименти проводять при оптимальній температурі, достатньо високих концентраціях субстрату, але при різних значеннях рН.

Механізми та особливості перебігу ферментативних реакцій

Ферменти, як і інші каталізатори, прискорюють тільки ті реакції, які термодинамічно можливі, тобто ті, що відбуваються самовільно, але з малою швидкістю. Можливість перебігу хімічної реакції визначається різницею між вільною енергією початкових речовин і продуктів реакції. Якщо вільна енергія продуктів реакції менша, ніж початкових речовин, тобто відбувалося розсіювання енергії, то реакція перебігає самовільно – вона термодинамічно можлива. У випадку переважання вільної енергії продуктів реакції над вихідними речовинами реакція енергетично стає неможливою (це так звана ендергонічна реакція). Вона може здійснюватись тільки за умов надходження зовніш­ньої енергії в кількості, більшій за енергію утворюваних продуктів.

Швидкість будь-якої реакції залежить від величини енерге­тичного бар'єру, який необхідно подолати реагуючим молекулам, але для різних реакцій величина цього бар'єру неоднакова. У зви­чайних умовах (при відсутності каталізатора, ферменту або при низьких температурах) є дуже мала кількість молекул, здатних перемагати цей бар'єр і вступати в реакцію. Отже, без каталізаторів та при низьких температурах швидкість реакцій буде низькою.

Механізм ферментативних реакцій

Для пояснення специфічності дії ферментів у 1894 р. Е. Фішер запропонував гіпотезу, яку ще й досі називають гіпотезою "ключа і замка" або гіпотезою "шаблону". В основі специфічності, за цією гіпотезою, лежить жорстка просторова відповідність субстрату і активного центру ферменту. За Е. Фішером, реакція можлива тільки в тому випадку, якщо просторово субстрат підходить до ферменту, як ключ до замка. Якщо субстрат (ключ) просторово відрізняється від структури активного центру ферменту (замок), то реакція не відбувається. Але і ця гіпотеза (її ще називають гіпотезою відповідності) не може пояснити різні види специфічності, бо важко уявити собі ситуацію, коли декілька ключів (субстратів) підходить до одного замка (ферменту). Тому ця гіпотеза була замінена і доповнена гіпотезою вимушеної співвідповідності (гіпотеза індукованої адаптації ферменту до субстрату). Згідно з цією гіпотезою, конфігурація ферменту і його активного центру є гнучкою й еластичною, що змінюється під впливом субстрату, тобто субстрат індукує у ферменті зміни конфігурації молекул відповідно до власної структури. Іншими словами, "замкова щілина", за Кошлендом, виготовлена з еластичного матеріалу і тому набуває форми "ключа" при контакті з ними. Але приєднання субстрату до ферменту може викликати зміни активного центру, при яких він утворює із суб­стратом неактивний комплекс, і тоді реакція не відбувається.  

Значну роль у вивченні механізму взаємодії ферменту і субстрату відіграли класичні праці Міхаеліса і Ментен, опубліковані в 1913 р., про так звані ферментосубстратні комплекси. Згідно з гіпотезою Міхаеліса-Ментен, ферментативна реакція завжди супроводжується утворенням проміжної короткоіснуючої сполуки – ферментосубстратного комплексу.

 Процес утворення комплексу описується рівнянням і перебігає у декілька стадій, кожна з яких має свої особливості:

1 стадія – зв'язування субстрату з активним центром ферменту, тобто утворення ферментосубстратного комплексу (ES);

2 стадія – перетворення первинного ферментосубстратного комплексу в один або декілька активних ферментосубстратних комплексів (ЕSx i ESxx);

3 стадія – відокремлення продуктів реакції від активного центру ферменту і вивільнення ферменту та продукту (Е і Р).

Кінетика ферментативних реакцій

 Основи кінетики ферментативних процесів були закладені у працях Міхаеліса і Ментен, зокрема в рівнянні ферментосубстратного комплексу.

Під кінетикою ферментативних процесів розуміють розділ науки про ферменти, що вивчає залежність швидкості ферментативної реакції від хімічної природи субстрату, умов середовища, а також сторонніх чинників, які впливають на перебіг реакції.

Коли концентрація субстрату досить велика, то вона вже не впливає на швидкість, бо остання стала максимальною (свідчення того, що весь фермент зв'язаний із субстратом). Графічно залежність швидкості реакції від концентрації субстрату описується гіперболою, яку називають кривою Міхаеліса. Форма кривої показує, що із збільшенням концентрації субстрату всі активні центри ферменту насичуються. Це досягається при максимальнїй концентрації ферменту і відповідає максимально можливій швидкості реакції. При низьких кон­центраціях субстрату ферментативна реакція відбувається за першим порядком, тобто швидкість зростання її залежить від концентрації однієї речовини – субстрату. В умовах високої концентрації субстрату реакція перебігає за нульовим порядком, тобто зміна концентрації не впливає на перебіг процесу, швидкість реакції за цих умов максимальна, оскільки всі активні центри ферменту зв'язані із субстратом.

Дія на ферменти модуляторів

Активність ферментів може змінюватись не тільки за зміною кількості субстрату, ферменту, рН середовища, але і під впливом різних хімічних речовин. Речовини, що впливають на хід ферментативних реакцій, називаються їх модуляторами, або ефекторами. Вони поді­ляються на активатори та інгібітори, тобто під їх впливом реакція може при­скорюватись або сповільнюватись. Вивчення дії модуляторів фер­ментів має практичне значення, бо дозволяє глибше зрозуміти природу дії ферментів. Деякі з них відіграють роль природних регуляторів метаболізму. Існує багато типів модуляторів активності ферментів, що відрізняються між собою за будовою та механізмом дії.

Активатори ферментів

Роль активаторів можуть відігравати як органічні (жовчні кислоти, ферменти й ін.), так і неорганічні речовини (іони металів, аніони). Нерідко зустрічаються випадки, коли одна і та ж речовина стосовно одного ферменту є активатором, а відносно іншого – інгібітором. Іони металів бувають досить специфічними активаторами для певних ферментів. Вони можуть сприяти приєднанню субстрату до ферменту, брати участь у формуванні третинної структури ферменту або бути складником активного центру. Іони багатьох металів (натрію, калію, кальцію, магнію, заліза, міді та ін.) є обов'язковими компонентами, що необхідні для нормального функціонування багатьох ферментів.

Деякі ферменти проявляють активуючу дію стосовно своїх неактивних форм (автокаталіз). Наприклад, пепсин відносно пепсиногену, трипсин – трипсиногену тощо. Деякі ферменти активують зовсім інші ферменти. Так, ентерокіназа шляхом відщеплення інгібітора перетворює неактивний трипсиноген в активний трипсин, а останній перетворює хімотрипсиноген у хімотрипсин. Активаторами можуть бути такі органічні сполуки, як цистеїн, відновлений глутатіон та інші, що мають вільну SH-групу. Ці сполуки здатні відновлювати дисульфідні зв'язки неактивних ферментів до сульфгідрильних груп і цим самим перетворювати ферменти в активні. Таким чином речовини з вільними SH-групами захищають ферменти від агресивних хімічних впливів, наприклад від окиснення, і тому виступають активаторами ферментів.

Існує група ферментів, що активуються за допомогою циклічного АМФ. Такі ферменти називаються протеїнкіназами.

Інгібітори ферментів

Подібно до активаторів, інгібуючу дію на ферменти можуть проявляти різні за будовою і за механізмом дії речовини. Вивчення різних інгібіторів відкриває великі можливості для розуміння механізмів дії ферментів. Інгібітори (від лат. інгібіціо – затримка, гальмування) – речовини, що, на відміну від активаторів, послаблюють або цілком призупиняють дію ферментів. Деякі інгібітори ферментів є отрутами для живих організмів (наприклад, ціаніди, сірководень, монооксид вуглецю). Ряд лікарських засобів також має виражені інгібуючі властивості щодо певних ферментних систем. Тому інгібітори широко застосовують в експериментальній медицині для з'ясування механізму дії лікарських середників.

За механізмом дії інгібітори поділяються на дві групи:

1. Інгібітори, що вступають із ферментами у зворотну реакцію.

2. Інгібітори, що реагують із ферментами незворотно.

Незворотний інгібітор утворює з ферментом міцну сполуку за рахунок ковалентних зв'язків. Ці зв'язки виникають між різними функціональними групами, що поєднуються з активним центром ферменту. Такий комплекс не розпадається і не дисоціює на вихідні речовини, наприклад, ціанідна кислота і її похідні, фосфороорганічні, тіолові отрути та ін.

Деякі незворотні інгібітори руйнують структуру молекули ферменту, тому їх ще називають денатурантами. Вони є неспецифічними інгібіторами для всіх ферментів. Сюди відносяться солі важких металів (свинець, ртуть, срібло). Зворотні інгібітори пригнічують реакцію, але не викликають значних змін у структурі молекули ферменту. Розрізняють три типи зворотного інгібування ферментів: конкурентне, неконкурентне і безконкурентне.

Конкурентне інгібування

Конкурентні інгібітори здатні зворотно зв'язуватись з активним центром ферменту і конкурувати із субстратом за активний центр. Такі інгібітори часто є структурними аналогами субстрату і тому комплементарні активному центрові ферменту. Якщо активний центр ферменту зв'язується з інгібітором, то він не зможе вступати в реакцію із субстратом. При наявності субстрату (S) й інгібітора (І) одночасно відбуваються дві реакції:

                           Е + S Þ ЕS Þ Е + Р

                           Е + І Þ ЕІ

Та сполука, концентрація молекул якої більша, буде переважно спо­лучатися з активним центром і визначати напрямок реакції. Зняти гальмівний вплив інгібітора можна надлишком субстрату, який витіснить інгібітор активних центрів молекул ферменту. Конкурентне інгібування широко застосовується в медичній практиці для боротьби з інфекціями. Конкурентними інгібіторами (ізостеричними) можуть виступати про­міжні продукти обміну – метаболіти, накопичення яких регулює активність ферментів. Дія багатьох лікарських середників відбувається за принципом конкурентного інгібування.

 Неконкурентне інгібування викликається речовинами, які не мають структурної спорідненості (подібності) із субстратом і зв'язуються з каталітичними групами активного центру та ділянками, що розташовані поза активним центром. Таке приєднання інгібітора до ферменту змінює конфігурацію активного центру, що пригнічує його взаємодію із субстратом. У цьому випадку утворюється потрійний комплекс: фермент-субстрат-інгібітор:

                                       Е+S+І Þ ESІ.

Цей комплекс не здатний перетворюватися в продукт, тому реакція зупиняється.

До неконкурентних інгібіторів належить багато різних речовин, наприклад солі важких металів (срібла, ртуті, свинцю, кадмію, міді), сполуки арсенію, фосфороорганічні речовини, алкілувальні речовини, йодацетат, ціаніди, окис вуглецю, сірководень. Конкретні механізми дії кожного з названих інгібіторів будуть різними.

Конкурентні та багато неконкурентних інгібіторів відносяться до так званих зворотних чинників, оскільки вони утворюють із ферментами нестійкий комплекс, тобто гальмують реакції без значних змін у структурі ферменту. Ті інгібітори, що вступають у реакції з ферментами і утворюють із ними міцні сполуки за рахунок ковалентних зв'язків, викликають незворотне гальмування. Важливе місце серед неконкурентних зворотних інгібіторів посідають проміжні продукти метаболізму. Вони здатні зворотно зв'язуватися із специфічними ділянками на поверхні деяких алостеричних ферментів і змінювати активність їх каталітичного центру.

Інгібування продуктами реакції

Продукт реакції нерідко за своєю структурою подібний до суб­страту. Тому, нагромаджуючись, такий продукт може поводити себе як конкурентний інгібітор ферменту. Цей процес може виконувати регуляторну функцію, бо нагромадження надлишку утвореного продукту призводить до гальмування його утворення. Наприклад, глюкоза є конкурентним інгібітором ферменту глюкозо-6-фосфатази.

Інгібування надлишком субстрату

Наявність в інкубаційному середовищі надмірно високих кон­центрацій субстрату викликає гальмування реакції. За цих умов крива Міхаеліса проявляє тенденцію до зниження. Зрозуміти таке інгібування можна, припустивши, що молекули субстрату через взаємні перешкоди здатні займати неправильні положення в активному центрі ферменту, що перешкоджає нормальному перебігові реакції.

Генетичне інгібування

Генетичне інгібування здійснюється шляхом пригнічення утворення ферменту на генетичному рівні. Генетичне гальмування настає тоді, коли зникає потреба в певному ферментові. Наприклад, у процесі еволюції в людини зникли ферменти, які синтезують речовини, що містяться в достатній кількості в продуктах харчування: деякі амінокислоти, вітаміни С, В1, В2  тощо.

Загальна характеристика процесів обміну речовин та енергії

Постійний обмін речовиною та енергією із зовнішнім середовищем є обов’язковою умовою існування живого. Обмін речовин включає в себе їх транспорт та перетворення. Біохімічні перетворення речовин в організмі називають метаболізмом. Найважливіші метаболічні шляхи були досліджені протягом 1930-1950 р. р. Вивчення метаболізму включає виявлення проміжних продуктів – метаболітів та дослідження властивостей ферментів, які каталізують їх перетворення.

Речовини, які попадають в організм людини з їжею, проходять попередню обробку (розщеплення полімерів на мономери) в травному тракті, після чого всмоктуються стінками травного тракту, попадають в кров’яне русло і розносяться до тканин. Переважна більшість цих первинних продуктів попадає в печінку, де утилізується і в доступній для інших тканин формі поступає в них. В печінці також зазнає перетворень багато токсичних речовин, які внаслідок цього стають менш небезпечними і виводяться з організму.

Всі метаболічні процеси, що відбуваються в організмі, можна віднести до двох напрямків: анаболізму і катаболізму

Анаболізм (асиміляція, пластичний обмін)- це ферментативні процеси синтезу високомолекулярних речовин (білків, нуклеїнових кислот, вуглеводів і ліпідів) з низькомолекулярних попередників. Ці процеси потребують затрати енергії, переважно у вигляді нуклеозидтрифосфатів (ATФ та ін.). Вони пов’язані з відновленням метаболітів за рахунок гідрогену, який поставляють проміжні переносники - коферменти НАД, НАДФ, ФАД.

Катаболізм (дисиміляція, енергетичний обмін)- це ферментативне розщеплення високомолекулярних речовин до низькомолекулярних продуктів. Катаболізм відбувається за рахунок окиснення, причому гідроген відбирається від речовин, що окиснюються, за допомогою проміжних переносників - коферментів НАД, НАДФ, ФАД. Катаболізм супроводжується виділенням енергії переважно у вигляді АТФ. Процеси катаболізму можна поділити на три етапи.

І – підготовчий полягає в розщепленні полімерів їжі і клітин на мономери і протікає для більшості процесів, зокрема у травному тракті, шляхом гідролізу. На цьому етапі енергія розсіюється у вигляді тепла.

 ІІ етап – анаеробний – відбувається на внутрішніх мембранах клітини. В ньому мономери окиснюються до спільних проміжних продуктів і вивільняють при цьому до 20% запасу внутрішньої енергії (η ≈ 40%). Прикладом такого процесу є гліколіз (перетворення глюкози до молочної кислоти).

ІІІ етап – аеробне (повне) розщеплення відбувається в мітохондріях. При ньому вивільняється до 80% запасу внутрішньої енергії метаболітів (η ≈ 55%).

 ІІІ етап каболізму можна вважати спільним для катаболізму і анаболізму - амфіболічними або центральними шляхами. Вони виконують подвійну функцію, тобто можуть як поставляти метаболіти, спільні для різних метаболічних шляхів (оцтова (ацетил-КоА), піровиноградна і α-кетоглутарова кислоти, 3-фосфогліцериновий альдегід), для анаболізму, так і завершувати катаболізм до кінцевих простих продуктів, які виводяться з організму (вуглекислота, вода і сечовина або аміак). Центральними шляхами є цикл трикарбонових кислот та цикл сечовини.