ГОРМОНИ В СИСТЕМІ ІНТЕГРАЦІЇ ФУНКЦІЙ ОРГАНІЗМУ ЛЮДИНИ

ЗАГАЛЬНІ ПРИНЦИПИ РЕГУЛЯЦІЇ МЕТАБОЛІЧНИХ ПРОЦЕСІВ В ОРГАНІЗМІ ЛЮДИНИ. ГОРМОНИ, ЗАГАЛЬНА ХАРАКТЕРИСТИКА.

 ГОРМОНИ ГІПОФІЗА.

 

Загальні відомості про гормони

В організмі людини нараховується приблизно 100 трильйонів клітин різної будови і призначення, які формують цілий ряд високоспеціалізованих тканин, органів і систем. Єдність і цілісність функцій і реакцій орга­нізму забезпечується тим, що всі процеси, які перебігають у клітинах, тканинах, органах і системах органів, взаємозв'язані і взаємопідлеглі. Цей взаємозв'язок зумовлений наявністю в організмі двох систем регуляції і узгодження функцій: нервової і гормональної (ендокринної).

Термін "гормон" походить від грецького «hormао», що означає "збуджувати", "приводити в рух". Гормони беруть участь у всіх важливих процесах життєдіяльності орга­нізму, зокрема у розмноженні, рості, диференціації і розвитку, адапта­ції до змін надходження поживних речовин, рідини, електролітів.

Отже, гормони – це біологічно активні речовини різноманітної хімічної природи, які виробляються в спеціалізованих клітинах залоз внутрішньої секреції, надходять безпосередньо в кров і здійснюють гуморальну регуляцію обміну речовин і функцій організму.

Гормони діють не на всі клітини, а лише на клітини-мішені, що містять специ­фічні білки-рецептори, які зв'язують молекули гормонів із високою вибір­ковістю. Рецептори локалізовані у плазматичній мембрані клітин або їх цито­плазмі чи ядрі. Кількість рецепторів у клітині не постійна і регулю­ється або кількістю власного гормону, або дією іншого гормону.

Ефекти дії гормонів:

1.         Зміна мембранної проникності. Змінюючи стан мембран, гормони можуть посилювати чи гальмувати швидкість переходу ферментів, коферментів чи субстратів в клітину і з клітини. В результаті може змінюватись швидкість і напрямок ферментативних процесів.

2.         Зміна активності окремих ферментів. Ферменти мають алостеричні центри, а гормони можуть бути алостеричними ефекторами. Діючи на алостеричні центри, вони можуть змінити конформацію фермента, в тому чилі активного центру, тим самим пригнічуючи або активуючи дію ферменту. Зрозуміло, що так діяти можуть лише гормони, які проникають в клітину.

3.         Зміна інтенсивності синтезу фермента, тобто, гормони можуть впливати на генетичний апарат клітини. Так діють кортикостероїди, андрогени, естрогени. Вони взаємодіють із специфічними рецепторами в цитоплазмі клітини. Комплекс  гормон-рецептор переходить в ядро, де звۥязується з негістоновими білками хроматину. Ці білки можуть набувати значного негативного заряду і витісняти з хроматину пістони. Ділянка ДНК звільняється (оперон), в цих місцях починається транскрипція і синтез певного ферменту.

4.         Вплив на розпад ферментів, синтез коферментів.

Класифікація гормонів

Існують морфологічна, хімічна, фізіологічна класифікації гормонів. За морфологічною класифікацією гормони розділяють залежно від місця їх синтезу, наприклад, гормони гіпофіза, щитовидної залози, підшлункової залози, надниркових залоз, статевих залоз тощо. Але ряд фактів не відповідають такому поділу. Так, статеві гормони утворюються в різних місцях: статевих залозах, корі надниркових залоз.

За хімічною природою гормони поділяються на такі групи:

1). Білково-пептидні гормони – за хімічною природою - прості білки; глікопротеїни; пептиди. До них належать: Гіпоталамо-гіпофізарні гормони; гормони паращитовидної залози; гормони острівкової частини підшлункової залози; гастроінтестинальні гормони; нейропептиди; численні тканинні біорегулятори пептидної природи.

2). Гормони похідні амінокислот. До них належать: гормони щитовидної залози; гормони мозкової частини наднирникових залоз (катехоламіни); інші нейромедіатори з властивостями гістогормонів (серотонін, дофамін, гістамін); гормон епіфіза —мелатонін. 

3) Гормони стероїдної природи - похідні холестеролу. До цього класу належать: глюкокортикоїди та мінералокортикоїди кори наднирникових залоз; чоловічі та жіночі статеві гормони; похідні вітаміну D.

4) Біорегулятори похідні арахідонової кислоти - (ейкозаноїди). До них відносять - простагландини, простацикліни, тромбоксани, лейкотрієни

За біологічними функціями гормони ділять на такі групи:

1). Гормони, що регулюють обмін вуглеводів, жирів, амінокислот: інсулін, глюкагон, глюкокортикоїди, адреналін.

2). Гормони, що регулюють водно-сольовий обмін: альдостерон, вазопресин, ангіотензин, натрійуретичний фактор передсердя.

3). Гормони, що регулюють обмін кальцію і фосфатів: паратгормон, кальцитонін, активні форми вітаміну D.

4). Гормони, що відповідають за репродуктивну функцію організму: андрогени, естрогени, прогестерон, гонадотропні гормони, пролактин.

5). Гормони, що регулюють функції периферичних ендокринних залоз: гормони гіпоталамуса, тропні гормони гіпофіза.

Регуляція синтезу і секреції гормонів

Ендокринні залози є складовою частиною системи нейрогуморальної регуляції організму. Під впливом різноманітних зовнішніх і внутрішніх подразників виникають електричні імпульси (потенціали дії) у спеціалізованих дуже чутливих рецепторах, що передаються доцентровими нервовими волокнами до клітин ЦНС. Після обробки інформації в ЦНС сигнали передаються на периферію. Під прямим контролем нервової системи знаходяться гіпоталамус і мозкова речовина надниркових залоз. Інші ендокринні залози зв'язані з нервовою системою опосередковано через гормони гіпоталамуса і гіпофіза.

Механізм дії гормонів залежить від здатності їх проникати через плазматичну мембрану клітини. Водорозчинні гормони білково-пептидної природи, а також адреналін не проходять через плазматичну мембрану, а взаємодіють із специфічними мембранними рецепторами. Внаслідок взаємодії включаються внутрішньоклітинні шляхи передачі інформації, які регулюють метаболізм клітини та різноманітні клітинні процеси. На рівні плазматичної мембрани передача інформації здійснюється шляхом послідовної зміни конформації мембранних білків (рецепторного, сполучного) і ферменту. Останній розміщений із внутрішньої сторони мембрани і каталізує утворення низькомолекулярної речовини – вторинного посередника, месенджера. Дифузія вторинного посередника забезпечує швидке поширення сигналу по всій клітині до конкретних ферментів чи інших білків, які реалізують відповідь клітини на первинний сигнал – гормон чи іншу речовину (наприклад, ліки, бактеріальний токсин), що здатні зв'язуватись із гормональним рецептором плазматичної мембрани.

Безпосередньою мішенню дії вторинних посередників служать ферменти протеїнкінази, які шляхом фосфорилювання активують чи інгібують специфічні клітинні білки. Усі складові компоненти складають систему (каскад) і забезпечують ефективну передачу і підсилення відповідного гормонального сигналу.

Першою була відкрита аденілатциклазна месенджерна система, в якій вторинним посередником є циклічний АМФ. Сигнал з гормональних рецепторів на аденілатциклазу передають G-білки двох типів: Gs‑білок активує аденілатциклазу, а Gi-білок гальмує. G-білки обох типів складаються з альфа-, бета- і гама-субодиниць, причому відрізняються альфа-субодиницями, мають центри зв'язування ГТФ і ГДФ та здатні гідролізувати зв'язаний ГТФ до ГДФ і неорганічного фосфату. До включення системи G-білок містить зв'язаний з альфа-субодиницею ГДФ і не взаємодіє з аденілатциклазою.

Приєднання гормону зумовлює конформаційні зміни рецептора і G‑білка. Останній швидко зв'язує ГТФ замість ГДФ і в такій формі змінює активність аденілатциклази (активує чи гальмує, залежно від типу). Одно­часно стимулюється ГТФазна активність G-білка і після переходу ГТФ у ГДФ активація аденілатциклази припиняється. Білок-рецептор, G-білок і каталітична субодиниця аденілатциклази разом складають аденілатциклазний комплекс. Трансмембранна передача сигналу комплексом завершується утворенням цАМФ. Далі передача сигналу пов'язана з дією цАМФ на внутрішньоклітинні компоненти аденілатциклазної системи.

Друга система передачі гормональних сигналів – фосфоінозитидна – складніша за аденілатциклазну. В ній використовується комбінація трьох вторинних посередників – інозитолтрифосфату, діацилгліцеролу і іонів Са2+.

Перші дві сполуки утворюються при гідролізі мембранного фосфоліпіду фосфатидилінозитол-4,5-дифосфату. Реакцію каталізує фосфоліпаза С, яка переходить в активний стан у результаті приєднання гормону до рецептора. Сигнал від рецептора до фосфоліпази С також передають G-білки.

Через фосфоінозитидну систему реалізується дія катехоламінів (при їх зв'язуванні з альфа1-адренорецепторами), тироліберину, гонадоліберину, вазопресину, ангіотензину II, гастрину, холецистокініну, брадикініну та інших гормонів.

Стероїдні та тиреоїдині гомони проникають через мембрани клітин-мішеней у цитоплазму і з'єднуються із специфічними білками-рецепторами. Комплекси гормон-рецептор переміщуються в ядро клітини, де зв'язуються із специфічними ділянками ДНК (гормоночутливими елементами). В результаті відбувається вибіркова транскрипція мРНК, а потім синтез транспортних і рибосомних РНК.

Гормони гіпоталамуса

В різних ділянках (нейронах) гіпоталамуса синтезуються гіпоталамічні регуляторні гормони – рилізинг-фактори (з англ. реліз – звільняти) або, за сучасною номенклатурою, ліберини і статини. За хімічною структурою це – низькомолекулярні пептиди. Гормони гіпоталамуса проникають у кров ворітної системи гіпофіза і з нею надходять в аденогіпофіз.

Виділення їх гіпоталамусом здійснюється під впливом нервових імпульсів, а також внаслідок змін концентрацій у крові певних гормонів (за принципом зворотного зв'язку). Ліберини стимулюють секрецію гормонів гіпофіза, а статини – гальмують.

Гормони гіпофіза

Функція гіпофіза така: контролює вироблення гормону щитоподібною залозою; стимулює функцію надниркових залоз; контролює функцію чоловічих і жіночих статевих залоз, а саме виділення статевих гормонів; плаценти як тимчасової залози; початок пологів, а також ріст тіла і водний баланс.

Гіпофіз може отримувати сигнали, що оповіщають про те, що відбувається в тілі, але він не має прямого зв'язку з зовнішнім середовищем. Про зовнішні впливи організм дізнається через органи чуттів, які передають отриману інформацію до центральної нервової системи. Будучи основною залозою ендокринної системи, гіпофіз сам підпорядковується центральній нервовій системі і зокрема гіпоталамусу.

Розрізняють гормони передньої, проміжної і задньої частини гіпофіза.

Синтез гормонів передньої частки аденогіпофіза і виведення її у кров запускається ліберинами гіпоталамуса через аденілатциклазну систему. Аденогіпофіз – це не одна залоза, а комплекс залоз, кожна з яких складається з особливого типу клітин і секретує свій гормон. За хімічною структурою гормони аденогіпофіза відносяться до білково-пептидних: АКТГ-поліпептид; соматотропін і пролактин – прості білки, а ТТГ, ФСГ і ЛГ – складні білки (глікопротеїни). До білкової частини остан­ніх входять 2 субодиниці, а вуглеводні ланцюги закінчуються залишками ­сіалової кислоти. При їх відщепленні гормони захоплюються клітинами печінки і там розпадаються

Задня частина є похідною від нервової системи (нейрогіпофіз), і в ній гормони не утворюються, а надходять по аксонах нервової клітини із гіпоталамуса. Тут вони депонуються і виділяються в кров'яне русло.

Обидва гормони нейрогіпофіза (вазопресин і окситоцин) за хімічною структурою є низькомолекулярними пептидами, як і гіпоталамічні ліберини і статини.

Соматотропін (соматотропний гормон (СТГ), гормон росту (ГР)

Соматотропіни є видоспецифічними білками, тому біологічна дія тваринних соматотропінів у людей не проявляється. ГР людини складається із 191 амінокислоти і містить 2 дисульфідних зв'язки. Первинна структура його визначена. ГР виділяється гіпофізом безперервно протягом всього життя організму. Секрецію його стимулює соматоліберин, а пригнічує соматостатин.

Соматотропін стимулює ріст хрящів і кісток не безпосередньо, а через стимуляцію утворення групи поліпептидів. Спочатку їх називали соматомединами, а зараз – інсуліноподібними факторами росту (ІФР). Їх концентрація у сироватці крові залежить від ГР. Найбільш вивчений ІФР‑1 (соматомедин С), який складається із 70 амінокислот. Основним місцем його синтезу вважають печінку.

При вродженому недорозвитку гіпофіза розвивається гіпофізарна карликовість. У людей із мутацією, що призводить до карликовості Ларона, спостерігається високий рівень ГР у плазмі при низькому вмісті ІФР-1. У таких хворих лікування гормоном росту не стимулює ріст. Карликовість також може бути одним із проявів гіпотиреозу (кретинізму) внаслідок недостатньої секреції передньою частиною гіпофіза тиреотропного гормону. На відміну від цієї патології, гіпофізарні карлики не відстають у розумовому розвитку і не мають ознак деформації скелета.

Надмірна продукція ГР у періоді до статевого дозрівання і до завершення окостеніння зумовлює гігантизм – ріст 210‑240 см і більше, не­про­порційно довгі кін­ців­ки.

У дорослих при гіперфункції гіпофіза роз­вивається акромегалія: непро­пор­­цій­но інтенсивний ріст окре­мих частин тіла (паль­ців рук і ніг, носа, нижньої щелепи, язика, внут­ріш­ніх органів). Причиною акромегалії звичайно є пухлина аденогіпофіза.

Пролактин

За хімічною будовою – простий білок, подібний до соматотропіну. Основна функція пролактину – стимуляція утворення молока в жінок, зокрема активація синтезу білків молока (казеїну, лактальбуміну), стимуляція поглинання глюкози тканиною молочної залози і синтезу лактози, жирів.

Пролактин стимулює утворення і секрецію молока, а окситоцин – виділення молока при годуванні грудьми. Під час вагітності статеві гормони естрогени і прогестерон перешкоджають початку лактації, блокуючи дію пролактину на молочні залози.

Кортикотропін (кортикотропний гормон, КТГ)

У базофільних клітинах аденогіпофіза синтезується високомолекулярний білок, глікопротеїн, який служить попередником цілого ряду активних пептидів. Білок-попередник назвали проопіомеланокортином. Він містить приблизно 400 амінокислотних залишків. При обмеженому протеолізі проопіомеланокортину утворюється КТГ (39 амінокислот) і бета‑ліпотропін (91 амінокислота). Зараз встановлено, що бета-ліпотропін розпадається в гіпофізі з утворенням опіатних (морфіноподібних) пептидів – ендорфінів і енкефалінів, що проявляють знеболювальну дію. Ще одним продуктом розпаду ліпотропіну є меланоцитостимулювальний гормон (бета - МСГ).

При пухлинах гіпофіза може мати місце гіперпродукція КТГ. Цікаво, що КТГ може синтезуватись і в пухлинних клітинах при деяких формах раку легень, аденокарциномі товстої кишки. У всіх цих випадках розвивається гіперактивність клітин кори надниркових залоз (хвороба Іценко-Кушинга).

Основні симптоми хвороби Іценко-Кушинга: ожиріння (жир відкладається в ділянці плечового пояса, над шийними хребцями и на животі); заокруглення лиця («місяцеподібне» лице); багряно-червоні щоки; тонка, суха, ціанотична шкіра; розтяжки червоно-фіолетового кольору на бедрах, грудях, плечах і животі; гематоми, що виникають при незначних травмах; гіперпігментація шкіри в області шиї, ліктів; гірсутизм у жінок (появляються вуса, борода, бакенбарди, волосся на грудях); порушення менструального циклу; зниження потенції у чоловіків; гінекомастія у чоловіків (збільшення молочних залоз); підвищення артеріального тиску; атрофія мязів; збільшення живота за рахунок атрофії мязів передньої черевної стінки; акне (гнійнички на шкірі); грибкові пошкодження шкіри і нігтів; трофічні язви на ногах; болі в ділянці хребта; спонтанні переломи ребер і хребців.

Меланоцитостимулювальний гормон (МСГ)

При гідролізі проопіомеланокортину утворюється також і меланоцитостимулювальний гормон. У постнатальному періоді в людини проміжна частина гіпофіза практично відсутня і МСГ у крові не визначається. На одній із стадій розвитку плід людини має виразну проміжну частину гіпофіза, в якій міститься велика кількість МСГ.

МСГ викликає стимуляцію синтезу меланіну в спеціалізованих клітинах (меланоцитах) і розсіювання меланіну по всій клітині. Це призводить до потемніння шкіри. У разі недостатньої кількості меланостимулюючого гормону виникає захворювання вітиліго (лат. vitiligo — недолік).

Вазопресин (антидіуретичний гормон, АДГ) і окситоцин

Ці два гормони синтезуються у тілах нейронів гіпоталамуса, по аксонах переміщаються до задньої частини гіпофіза і через нервові закінчення виділяються у кров. За хімічною природою – пептиди, утворюються із більших білків-попередників.

Дія вазопресину характеризується такими ефектами:

1. Антидіуретична дія. У клітинах ниркових канальців взаємодія АДГ з V2-рецепторами викликає підвищення рівня цАМФ, фосфорилювання поки що невідомих білків, що зумовлює збільшеня проникності мембрани для води, і реабсорбцію води, вільної від іонів, за гра­дієнтом концентрації із гіпотонічної первинної сечі через клітини в позаклітинну рідину. В результаті осмотичний тиск плазми крові і тканинної рідини зменшується і секреція гормону припиняється.

2. Підтримка артеріального тиску. Взаємодія АДГ з V1-­рецепторами гладком'язових клітин в судинах викликає збільшення концентрації іонів кальцію в клітинах і скорочення м'язів, звуження судин, підвищен­ня кров'яного тиску.

3. Участь у механізмах пам'яті. АДГ позитивно діє на закріплення пам'яті й мобілізацію інформації, що зберігається. Клітинні механізми впливу АДГ на ЦНС вивчені недостатньо.

При недостатності АДГ виникає нецукровий діабет, при якому за добу із організму виводиться 10-20 л дуже гіпотонічної сечі. Лікується природним гормоном чи синтетичними аналогами. Відомі препарати з чистою антидіуретичною дією без пресорної активності. Нефрогенний нецукровий діабет зумовлюється втратою здатності рецепторів клітин дистальних відділів нефрону реагувати на АДГ.

Окситоцин проявляє 2 біологічні ефекти: скорочення мускулатури матки і виділення молока. Концентрація рецепторів до окситоцину в гладкій мускулатурі матки зростає під час вагітності і досягає максимуму на ранній стадії родового акту. Окситоцин бере участь у початку родів як безпосередньо, викликаючи скорочення м'язів матки, так і опосередковано, стимулюючи утворення простагландинів, які є сильним активаторами скорочення гладких м'язів. Окситоцин використовується у клініці для стимуляції родів. Виділення молока окситоцином стимулюється внаслідок скорочення м'язових волокон, розміщених навколо альвеол молочних залоз.

Гормони підшлункової залози

Ендокринні клітини острівців Лангерганса підшлункової залози синтезують ряд гормонів: А-клітини – глюкагон, В-клітини – інсулін, D‑клітини – соматостатин, F-клітини – панкреатичний поліпептид. Біологічна роль останнього мало вивчена.

Інсулін

Інсулін – це невеличкий глобулярний білок, який складається із двох поліпептидних ланцюгів. А-ланцюг містить 21 амінокислотний залишок, В-ланцюг – 30, вони з'єднані двома дисульфідними мостиками. Синтезується інсулін із білків-попередників шляхом обмеженого протеолізу: препроінсулін (107 амінокислотних залишків)® проінсулін (84)® інсулін (51) і С-пептид (33). Інсулін і С-пептид у клітинах острівців упаковуються в секреторні гранули і вивільняються в кров шляхом екзоцитозу.

Швидкість секреції інсуліну залежить від концентрації глюкози в крові. При нормальному рівні глюкози в крові натще (3,33-5,5 ммоль/л) секреція інсуліну мінімальна. Під час споживання їжі підвищення концентрації глюкози в крові викликає збільшення секреції інсуліну. На швидкість синтезу і секреції інсуліну впливають також гормон росту, глюкагон, адреналін, секретин, холецистокінін, соматостатин, причому, за винятком адреналіну і соматостатину, всі інші збільшують секрецію інсуліну.

Біологічні ефекти інсуліну. Рецептори інсуліну відкриті в ­багатьох типах клітин. Головними мішенями дії інсуліну є клітини м'язів, печінки, жирової тканини. Рецептори локалізовані у плазматичній мембра­ні, за хімічною природою є глікопротеїнами, вуглеводна частина яких знаходиться на зовнішній стороні мембрани.

Період напіврозпаду інсуліну становить приблизно 30 хв. Руйнується він головним чином у печінці інсуліназою. При одноразовому прохо­джен­ні крові через печінку руйнується приблизно 80 % інсуліну.

Цукровий діабет

Розрізняють інсулінозалежні та інсулінонезалежні форми цукрового діабету. У першому випадку рівень інсуліну в крові значно нижчий, ніж у нормі, а у другому випадку рівень інсуліну може знаходитись у межах норми або навіть вище. При інсулінонезалежному діабеті має місце інсулінорезистентність клітин-мішеней, тобто зниження відповіді їх на ендогенний і екзогенний інсулін. У деяких випадках резистентність до інсуліну є наслідком зменшення кількості рецепторів до інсуліну.

При хронічній недостачі інсуліну розви­ваються ускладнення цукрового діабету.

Ускладнення цукрового діабету:

Основна причина їх – тривала гіперглікемія, яка викликає ферментативне і неферментативне глікозилювання різноманіт­них білків. Приєднання залишків глюкози до певних амінокислотних залишків поліпептидних ланцюгів змінює просторову структуру і ­порушує функції білків. Патофізіологічні прояви: порушення фільтрації в клубочках; порушення проникності судин, мікроангіопатії; порушення зору, катаракта; патологія нервової системи, нейропатії; зниження спорідненості з киснем; порушення згортання крові; порушення рубцювання ран; інсулінорезистентність; порушення зв’язування ЛНГ з рецепторами клітини.

Глюкагон

Глюкагон – це поліпептид, який складається із 29 амінокислотних залишків. Синтезується з білка-попередника в А-клітинах підшлункової залози: препроглюкагон – проглюкагон – глюкагон.

Після синтезу глюкагон депонується в гранулах і вивільняється в кров шляхом екзоцитозу. Секреція глюкагону гальмується глюкозою, іонами Са2+ та інсуліном. Концентрація глюкагону й інсуліну в крові змінюється протилежним чином: відношення інсулін/глюкагон максимальне під час травлення і мінімальне при голодуванні.

Органи-мішені для глюкагону: печінка, міокард, жирова тканина, але не скелетні м'язи. Глюкагон взаємодіє з рецепторами, які локалізовані на плазматичній мембрані, що викликає активацію аденілатциклази, збільшення рівня цАМФ і активацію протеїнкіназ.

Біохімічні ефекти глюкагону протилежні ефектам інсуліну (це контрінсулярний гормон). Цей гормон викликає потужну мобілізацію джерел енергії за рахунок активації катаболізму вуглеводів і ліпідів.

Гормони мозкового шару надниркових залоз

У хромафінній тканині мозкового шару наднирників утворюються катехоламіни (адреналін - 85%, норадреналін – 15%) (рис. 28).

Адреналін (епінефрин) - гормон, який секретується в наднирниках при стресі (концентрація його в крові зростає в 4-5 разів) і є медіатором в деяких синапсах.

Катехоламіни синтезуються з амінокислоти тирозину. Перетворення тирозину в норадреналін і потім в адреналін має чотири послідовні етапи:

1.Гідроксилювання кільця (тирозин-гідроксилаза).

2.Декарбоксилювання (ДОФА-декарбоксилаза).

3.     Гідроксилювання бічного ланцюга (дофамін-бета-гідроксилаза-ДБГ).

4.     N-метилювання (фенілетаноламін-N-метилтрансфераза).

Біохімічні ефекти адреналіну:

Адреналін - це контрінсулярний гормон, дія якого спрямована насамперед на збільшення концентрації глюкози в крові. Крім того, цей гормон має катаболічну дію на обмін ліпідів.

Вплив адреналіну на обмін вуглеводів полягає в стимуляції глікогенолізу в печінці і м’язах. Це досягається шляхом активації глікогенфосфорилази. У м’язах відбувається розщеплення глікогену до глюкозо-6-фосфату і далі до лактату. У печінці в результаті глікогенолізу утворюється вільна глюкоза, яка надходить у кров, що призводить до підвищення рівня глікемії. Це має велике значення для забезпечення інших тканин паливом в умовах стресу.

Вплив адреналіну на обмін ліпідів полягає в стимуляції ліполізу в жировій тканині через активацію ключового ферменту цього процесу - ТАГ-ліпази. У результаті в крові підвищується вміст вільних жирних кислот, що є додатковим джерелом метаболічної енергії.

В інактивації катехоламінів беруть участь два ферменти:

1)    моноамінооксидаза (МАО) - мітохондріальний фермент;

2)    катехол-О-метилтрансфераза - фермент цитозолю.

Найбільша активність цих ферментів спостерігається в печінці і нирках. Визначення концентрації катехоламінів в крові є важливим діагностичним підтвердженням діагнозу феохромоцитом.

Феохромоцитоми - пухлини, які розвиваються у мозковій речовині наднирника, яка володіє здатністю виробляти адреналін і норадреналін, що призводить до розвитку різких підйомів артеріального тиску.
Феохромоцитома по праву вважається самою підступною й непередбачуваною пухлиною. Розвиваються, як правило, раптово гіпертонічні кризи, які супроводжуються серцебиттям, панікою, тремором рук і ніг, ознобом, підвищеним потовиділенням, запамороченням. Протягом 2-3 хвилин артеріальний тиск може досягти 250 - 300 мм.рт.ст., що нерідко закінчується інфарктом міокарда або інсультом.

Тканинні гормони

Гормоноїди  (парагормони), різнорідні за хімічною структурою біологічно активні речовини, що діють на обмін речовин і багато фізіологічних процесів в організмі. Утворюються, як правило, не в залозах внутрішньої секреції, як гормони, а в ін. тканинах і органах. Біологічна дія гормоноїдів короткочасна, оскільки вони руйнуються або зв'язуються тканинними білками. До парагормонів відносять ацетилхолін, деякі попередники і продукти перетворення адреналіну, тканинні гормони, або гістогормони (гастрин, гепарин, секретин і ін.),  гістамін, серотонін і деякі ін. біогенні аміни.

Ацетилхолінбіологічно активна речовина, широко поширене в природі. Ацетилхолін відноситься до медіаторівпередавачів нервового збудження в периферичній і центральній нервовій системі. Проникаючи в органи і тканини, ацетилхолін може викликати ефекти, характерні для збудження парасимпатичних елементів вегетативної нервової системи (зниження кров'яного тиску, уповільнення серцебиття, посилення перистальтики шлунку і кишок, звуження зіниці і т. д.).

Гастрин (від грецьк. gaster — шлунок), гормон поліпептидної природи, що виробляється слизовою оболонкою шлунку. Він викликає посилення секреції шлункового соку і соку підшлункової залози, а також жовчевиділення, змінює тонус і моторику шлунка і кишечника. Збільшення вмісту в шлунку соляної кислоти (під час попадання до нього кислого шлункового соку) гальмує виділення гастрину.

Гепарин (від грецьк. - hepar — печінка), речовина, що перешкоджає згортанню крові; вперше виділений з печінки. Синтезується в опасистих клітинах, скупчення яких знаходяться в органах тварин, особливо в печінці, легенях, стінках судин.

За хімічною природоюі він — сірковмісний мукополісахарид, що складається з глюкозаміну, глюкуронової кислоти і пов'язаних з ними залишків сірчаної кислоти. Гепарин застосовують в медицині як антикоагулянт для профілактики і лікування тромбозів.

Секретин, речовина гормонального характеру, що виробляється слизовою оболонкою верхнього відділу тонкого кишечника і бере участь в регуляції секреторної діяльності підшлункової залози. Всмоктуючись в кров, секретин досягає підшлункової залози, в якій підсилює секрецію води і електролітів, переважно бікарбонату.

Гістамін, тканинний гормон, володіє сильною біологічною дією, належить до біогенних амінів. Утворюється в результаті декарбоксилювання амінокислоти гістидину.

  Міститься в великих кількостях в неактивній, зв'язаній формі в різних органах і тканинах тварин і людини (легені, печінка, шкіра), а також в тромбоцитах і лейкоцитах. Звільняється при анафілактичному шоці, запальних і алергічних реакціях. Викликає розширення капілярів і підвищення їх проникності, звуження великих судин, скорочення гладкої мускулатури, різко підвищує секрецію соляної кислоти в шлунку. Вивільнення гістаміну. із зв'язаного стану при алергічних реакціях призводить до почервоніння шкіри, свербіння, утворення пухирів.

Серотонін, 5-окситриптамін, біологічно активна речовина, що міститься в крові і тканинах тварин і людини; є медіатором нервової системи як на периферії, так і в нервових центрах (головним чином в гіпоталамусі ). У організмі серотонін синтезується з амінокислоти триптофану, у людини і більшості хребетних — головним чином у клітинах слизової оболонки тонкого кишечника, а також в підшлунковій залозі і центральній нервовій системі. Серотонін впливає на тонус судин, бере участь в гуморальній регуляції функцій центральної нервової системи, а також травної, видільної, ендокринної систем.