Медицина

БІОХІМІЧНІ ФУНКЦІЇ ПЕЧІНКИ

БІОХІМІЧНІ ФУНКЦІЇ ПЕЧІНКИ

 

Печінка займає центральне місце в обміні речовин завдяки анатомічному розміщенню і багатому набору ферментів.

ФУНКЦІЇ ПЕЧІНКИ

Поживні речовини, які всмоктувались у кишковому тракті, з кров'ю ворітної вени надходять, за винятком ліпідів, у печінку. Частина ліпідів через лімфу і загальне коло кровообігу також надходить у печінку. Тут поживні речовини піддаються певним перетворенням і постачаються через кров до всіх інших органів і тканин. Таким чином, печінка є основним органом розподілу поживних речовин в організмі, зокрема глюкози, триацилгліцеринів і кетонових тіл.

У печінці синтезуються багаточисленні білки і ліпопротеїни плазми крові, низькомолекулярні біохімічно активні речовини (креатин, 25‑оксихолекальциферол, гем), холестерин, кінцевий продукт азотового обміну – сечовина.

У печінці синтезуються жовчні кислоти, утворюється і виділяється у кишечник жовч, що має значення для травлення ліпідів, виведення надлишку холестерину і деяких продуктів метаболізму в кишечник.

Печінка має особливу властивість запасати вітаміни А, D і B12 запасає залізо у вигляді феритину, утворює більшу частину факторів згортання крові, знешкоджує лікарські препарати, гормони і деякі інші речовини.

Таким чином, печінка виконує метаболічні, біосинтетичні, дезінтоксикаційні та екскреторні функції.

 

Обмін вуглеводів у печінці

Всмоктуючись у кишечнику, глюкоза надходить з кров'ю ворітної вени у печінку, де більша частина її фосфорилюється з утворенням глюкозо-6-фосфату.

У паренхіматозних клітинах печінки є обидва ферменти, які каталізують цю реакцію – гексокіназа і глюкокіназа, що відрізняються своїми каталітичними властивостями.

Фруктоза і галактоза також після всмоктування перетворюються у печінці в глюкозо-6-фосфат. Спадковий дефіцит ферментів перетворення фруктози і галактози у печінці зумовлює розвиток захворювань – непереносимості фруктози, фруктоземії, галактоземії.

Глюкозо-6-фосфат – ключовий проміжний продукт обміну вуглеводів – може перетворюватись у печінці різними шляхами, і вибір якогось одного із них залежить від потреб як самої печінки, так і всього організму.

 

1. Із глюкозо-6-фосфату синтезується глікоген, запасна форма глюкози в організмі.

У нормі вміст глікогену в печінці складає 70-100 г, при споживанні їжі, багатої вуглеводами, зростає до 150 г. Через декілька годин після прийому їжі глікоген печінки поступово розпадається до вільної глюкози для забезпечення потреби організму у вуглеводах (але стільки ж синтезується із глюкози їжі). Приблизно через 24 год голодування вміст глікогену в печінці падає майже до нуля і для забезпечення організму глюкозою буде перебігати з максимальною інтенсивністю процес глюконеогенезу.

Спадкові хвороби, пов'язані з порушенням обміну глікогену, називаються глікогенними хворобами.

2. Під дією глюкозо-6-фосфатази – ферменту, який знаходиться тільки у печінці, клітинах епітелію ниркових канальців і тонкого кишечника, глюкозо-6-фосфат гідролізується до вільної глюкози, яка надходить у кров і доставляється до інших тканин. Вивільнення глюкози із печінки відбувається, коли її концентрація в крові падає нижче нормального рівня. Завдяки цьому підтримується концентрація її у межах фізіологічної норми (3,33-5,55 ммоль/л).

 

3. Надлишок глюкозо-6-фосфату, який не використаний на утворення глюкози крові і глікогену печінки, розщеплюється шляхом гліколізу до піровиноградної кислоти і далі – до ацетил-КоА і СО2, які використовуються для синтезу жирних кислот. Із проміжного продукту гліколізу – діоксіацетонфосфату – шляхом відновлення утворюється гліцерол-3-фосфат. Жирні кислоти і гліцерол-3-фосфат використовуються для синтезу жирів (триацилгліцеринів), гліцерофосфоліпідів, які частково залишаються у печінці, а частково переносяться до інших тканин у складі ліпопротеїнів. Певна частина ацетил-КоА у печінці використовується для синтезу холестерину.

4. Розпад глюкозо-6-фосфату до СО2 і Н2О постачає клітини печінки енергією. В аеробних умовах поєднання гліколізу в цитоплазмі і циклу лимонної кислоти з окиснювальним фосфорилюванням у мітохонд­ріях дає максимальний вихід – 38 моль АТФ на 1 моль глюкози.

5. Частина глюкозо-6-фосфату у печінці окиснюється в пентозофосфатному циклі. Цей шлях розпаду глюкози постачає відновлений НАДФН, необхідний для реакції відновлення під час біосинтезу жирних кислот, холестерину і для реакції мікросомального окиснення, а також пентозофосфати, необхідні для синтезу нуклеотидів і нуклеїнових кислот.

Приблизно 1/3 глюкози окиснюється у печінці пентозофосфатним шляхом, а 2/3 використовується у ході реакцій гліколізу.

Глюконеогенез із лактату відбувається у період відновлення після інтенсивного м'язового навантаження, коли лактат, що утворюється у м'язах, надходить у печінку і перетворюється в глюкозу. Остання із печінки доставляється у м'язи і використовується для відновлення запасів глікогену.

Глюконеогенез із амінокислот разом із розпадом глікогену печінки забезпечують постійність рівня глюкози в крові у проміжках між споживаннями їжі. Максимальної активності глюконеогенез досягає через 1 добу вуглеводного чи повного голодування, коли запас глікогену печінки вичерпується. Тоді йде інтенсивний розпад білків тканин, в основному м'язів, і амінокислоти потрапляють у печінку, де служать субстратами для глюконеогенезу.

Співвідношення між процесами розпаду і синтезу глюкози і глікогену в клітинах печінки знаходиться під контролем цілого ряду факторів регуляції, у тому числі концентрації АТФ, АДФ і АМФ, проміжних продуктів обміну і гормонів.

 

Обмін ліпідів у печінці

Ферментні системи здатні здійснювати регуляцію ліпідного обміну цілого організму. Тісно поєднані між собою процеси обміну жирів у печінці і жировій тканині. Важливе значення має постачання печінкою іншим органам і тканинам фосфоліпідів, холестерину, кетонових тіл.

В організмі людини резерви жирів локалізовані в основному в жировій тканині, а в печінці вміст їх менший 1 % від маси органа. Під час значного фізичного навантаження, стресового стану, а також голодування в жировій тканині стимулюються ліполіз і вивільнення жирних кислот. Вільні жирні кислоти потрапляють у кров і у вигляді комплексів з альбу­міном плазми розносяться до інших органів і тканин. До 50 % цих жирних кислот можуть поглинатись печінкою і використовуватись для окиснення до СО2 і Н2О, утворення кетонових тіл або синтезу триацилгліцеринів, фосфоліпідів і ефірів холестерину.

В умовах спокою і достатнього надходження в організм поживних речовин печінка отримує енергію в основному за рахунок окиснення амінокислот, а не жирних кислот. При голодуванні основним джерелом енергії стає окиснення жирних кислот до СО2 і Н2О.

Крім того, при голодуванні різко збільшується окиснення жирних кислот з утворенням кетонових тіл. Кетонові тіла утворюються у печінці, звідки переносяться кров'ю до периферичних тканин, де використовуються як джерело енергії.

Окиснення кетонових тіл відбувається у скелетних м'язах, міокарді, нирках і навіть у мозку. В цих тканинах є ферменти, які перетворюють ацетооцтову і бета-гідроксимасляну кислоти в ацетил-КоА (тобто використання кетонових тіл проходить у циклі Кребса). У самій печінці ферменти активації ацетооцтової кислоти відсутні, тому кетонові тіла там не утилізуються. Як енергетичний субстрат кетонові тіла більш ефективно конкурують з глюкозою, ніж нерозчинні у воді вищі жирні кислоти, концентрація яких у крові лімітується кількістю альбумінів.

При тривалому голодуванні споживання глюкози у мозку знижується приблизно до 25 % від початкового рівня і в цих умовах кетонові тіла служать для мозку основним джерелом енергії. Підвищений рівень кетонових тіл у плазмі крові в час голодування (близько 2 ммоль/л) розглядають як фізіологічний кетоз, а при важких формах цукрового діабету має місце патологічний кетоз, коли концентрація кетонових тіл досягає 20-30 ммоль/л.

Накопичення кетонових тіл при тривалому голодуванні, цукровому діабеті, нирковій глюкозурії, тобто в умовах обмеженої утилізації вуглеводів і посиленої мобілізації жирних кислот із депо, зумовлюється недостачею оксалоацетату, який приводить до гальмування включення ацетил-КоА в цикл лимонної кислоти і направлення його на синтез кетонових тіл.

Важливим біосинтетичним шляхом у печінці є утворення жирних кислот і жирів (ліпогенез). Жирні кислоти синтезуються швидко і у великій кількості із ацетил-КоА, джерелом якого може бути глюкоза і амінокислоти, не використані для інших функцій.

Новосинтезовані жирні кислоти, а також жирні кислоти, які потрапили у печінку із хіломікронів під час травлення жирів їжі, та жирні кислоти, звільнені із жирових депо при мобілізації жирів, використовуються в гепатоцитах для синтезу жирів, фосфоліпідів, ефірів холестерину, або окиснюються.

Напрямок перетворення залежить від рівня енергії в клітинах печінки й енергетичних потреб цілого організму, концентрації жирних кислот у плазмі крові, інтенсивності обміну в позапечінкових тканинах.

Гліцерол-3-фосфат, необхідний для утворення жирів і фосфоліпідів, синтезується у печінці двома шляхами: із вільного гліцерину під дією гліцеролкінази та відновленням діоксіацетонфосфату гліцеролфосфатдегідрогеназою. Активні форми жирних кислот (ацил-КоА) взаємодіють з гліцерол-З-фосфатом з утворенням фосфатидної кислоти, яка далі використовується для синтезу триацилгліцеринів і гліцерофосфоліпідів.

У печінці може зберігатись тільки обмежена кількість жирів (менше 1 % маси органа), а їх надлишок виводиться у кров у складі ЛДНГ.

Останні надходять у капіляри позапечінкових тканин, де під дією ліпопротеїнліпази жири гідролізуються, і жирні кислоти утилізуються в клітинах. Швидкість секреції печінкою ЛДНГ відповідає швидкості їх споживання периферичними тканинами. За добу печінка виділяє в кров близько 20‑50 г жиру.

Порушення виведення жирів із печінки у складі ліпопротеїнів зумовлює жирове переродження печінки. Зазначимо роль фосфоліпідів у попередженні жирової інфільтрації печінки.

Синтезовані у печінці фосфоліпіди також надходять у кров в складі ліпопротеїнів і доставляються до позапечінкових тканин для оновлення мембранних структур. При зниженні синтезу фосфоліпідів внаслідок нестачі холіну швидкість виходу жирних кислот із печінки зменшується, що сприяє накопиченню жиру. Холін і речовини, які сприяють його синтезу в печінці, зокрема амінокислота метіонін, проявляють ліпотропну активність.

 Печінка відіграє центральну роль і в обміні холестерину. Вміст його в організмі підтримується на постійному рівні за допомогою регуляторних механізмів. У печінці синтезується близько 80 % холестерину організму. Біосинтез його регулюється за принципом негативного зворотного зв'язку. Тому при потраплянні в організм значної кількості холестерину з їжею синтез його гальмується, і навпаки. Крім того, синтез холестерину знаходиться під контролем інсуліну і глюкагону, тобто залежить від забезпечення організму поживними речовинами.

Під час транспорту із печінки до інших тканин холестерин включається у ЛДНГ, причому більша частина у формі ефірів. ЛДНГ після віддачі жиру тканинам перетворюються у плазмі в ЛНГ, які містять до 50 % ефірів холестерину. ЛНГ захоплюються клітинами різних тканин, де холестерин включається в склад мембран або використовується для утворення стероїдних гормонів чи вітаміну D. Надлишок холестерину переноситься від позапечінкових тканин до печінки у складі ЛВГ.

Виводиться холестерин із печінки в складі жовчі у кишечник. Друга частина холестерину в печінці йде на синтез жовчних кислот. Цей процес включає реакції вкорочення й окиснення бокового ланцюга з утворенням карбоксильної групи і реакцій гідроксилювання стероїдного ядра холестерину. Утворення парних жовчних кислот, тобто ­кон'югатів жовчних кислот з гліцином чи таурином, також здійснюється у печінці. Синтез жовчних кислот із холестерину регулюється за принципом негативного зворотного зв'язку, тому всмоктування жовчних кислот у кишечнику і надходження в печінку є одним із механізмів регуляції синтезу холестерину.

 

 

обмін білків у печінці

 

Печінка займає ключову роль в обміні білків і амінокислот. У клітинах печінки, на відміну від інших органів, є повний набір ферментів, що беруть участь в амінокислотному обміні. Амінокислоти, що всмоктуються у кишечнику, потрапляють з кров'ю ворітної вени у печінку і використовуються тут в різних шляхах обміну.

Печінка бере участь і в метаболізмі амінокислот, що надходять за певних умов із периферичних тканин. Інтенсивно цей процес перебігає під час голодування організму. Крім того, клітини печінки (а також ряду інших органів) захоплюють білки гемолізованих еритроцитів, денатуровані білки плазми, білкові й пептидні гормони і за допомогою внутрішньоклітинних протеолітичних ферментів гідролізують їх до вільних амінокислот.

Для печінки характерна висока швидкість синтезу і розпаду білків, як тих, що функціонують у самій печінці, так і тих, що секретуються в кров. Оскільки в організмі немає резерву білків і амінокислот, подібного до резерву вуглеводів чи жирів, то у періоди недостатнього харчування деякі менш функціонально важливі білки печінки, як і ряду інших органів, розпадаються, а із амінокислот синтезуються більш необхідні в цих умовах ферменти, білки-рецептори тощо.

Період напіврозпаду альбуміну – 20-26 днів, тому при гострих гепатитах, якщо хвороба не триває декілька тижнів, рівень альбуміну плазми залишається у межах норми. За цих умов найціннішим прогностичним показником є визначення протромбінового часу (проби на згортання крові), оскільки період напіврозпаду факторів згортання крові – тільки 5-72 год. Швидко оновлюються і внутрішньопечінкові ферменти, їх утворення індукується харчовими факторами, рядом гормонів, що, в свою чергу, впливає на обмін речовин всього організму.

Ті амінокислоти, які не використані для синтезу білків у печінці чи інших органах, піддаються катаболізму чи перетворенню в інші речовини. Амінокислоти втрачають аміно­групу в результаті прямого чи непрямого дезамінування, а утворені кетокислоти різними шляхами надходять у цикл лимонної кислоти. Після споживання білкової їжі окиснювальний розпад амінокислот служить основним джерелом енергії у печінці. Вуглецеві скелети амінокислот можуть перетворюватись у вуглеводи, жирні кислоти, кетонові тіла.

Деякі амінокислоти є глікогенними, інші – і глікогенними, і кетогенними, а виключно кетогенною є лейцин. При голодуванні чи недостатньому надходженні вуглеводів з їжею за рахунок глюконеогенезу із амінокислот підтримується нормальна концентрація глюкози в крові і, таким чином, забезпечуються глюкозою мозок, еритроцити, мозкова речовина нирок. Джерелом амінокислот для глюконеогенезу в цих умовах служить розпад білків скелетних м'язів. Дезамінування амінокислот відбувається в основному в печінці.

У печінці токсичний аміак, продукт дезамінування амінокислот, амінів, пуринових і піримідинових основ, перетворюється у нешкідливу сечовину, яка дифундує у кров і через нирки виводиться з організму.

Фермент аргіназа, який каталізує заключну реакцію циклу утворення сечовини, знаходиться виключно у цитоплазмі гепатоцитів. При споживанні багатої білками їжі зростає вміст у печінці всіх ферментів циклу. При ураженнях печінки здатність її до синтезу сечовини тією чи іншою мірою знижується, що супроводжується гіперамоніємією, гіпераміноацидемією, аміноацидурією. Отруєння аміаком є важливим чинником печінкової коми.

У печінці здійснюється синтез замінних амінокислот при недостатньому їх споживанні. Таким чином, печінка може забезпечувати інші органи збалансованою сумішшю амінокислот, необхідною для синтезу білків.

 

РОЗЩЕПЛЕННЯ ГЕМОГЛОБІНУ. ЖОВЧНІ ПІГМЕНТИ

Тривалість життя еритроцитів складає 110-120 днів. Еритроцити такого віку фагоцитуються макрофагами головним чином у селезінці, а також у кістковому мозку і печінці. Гем після звільнення з гемоглобіну повторно не використовується, його порфіриновий цикл перетворюється в жовчні пігменти, які виводяться з організму.

І тільки залізо повторно застосовується для синтезу гемопротеїнів чи відкладається для запасання. Глобін гідролізується протеолітичними ферментами до амінокислот. Інші гемопротеїни (міоглобін, цитохроми, каталаза і пероксидази) розпадаються аналогічним чином.

Фермент ендоплазматичного ретикулума гемоксигеназа, за хімічною будовою є однією з ізоформ цитохрому Р-450, і супроводжується виділенням монооксиду вуглецю, каталізує першу реакцію розпаду гему – розрив метинового містка між 2 пірольними кільцями внаслідок окиснення атома вуглецю до СО. При цьому утворюється пігмент зеленого кольору – вердоглобін (холеглобін), його молекула ще містить залізо і білок-глобін.

Подальший розпад вердоглобіну відбувається самостійно і призводить до відщеплення заліза, білкового компонента й утворення одного з жовчних пігментів – білівердину. Одночасно спостерігається перерозподіл подвійних зв'язків і атомів водню в пірольних кільцях та метинових містках. Білівердин – пігмент зеленого кольору, побудований із чотирьох пірольних кілець, зв'язаних між собою лінійно за допомогою метинових містків.

Білівердинредуктаза відновлює білівердин до білірубіну, пігменту червоно-коричневого кольору. Частина білірубіну утворюється в печінці, а решта – в клітинах РЕС селезінки і кісткового мозку і повинна бути перенесена в печінку для подальших перетворень. Оскільки білірубін у воді малорозчинний, він транспортується кров'ю в комплексі з альбуміном (2 молекули білірубіну на 1 молекулу альбуміну).

У печінці відбувається розділення альбуміну і білірубіну. Білірубін є ліпідорозчинною речовиною і у високих концентраціях проявляє мембранотоксичність, особливо для клітин головного мозку. Детоксикація білірубіну, яка полягає в перетворенні пігменту у водорозчинну (і менш токсичну) форму — глюкуронід білірубіну, відбувається в мембранах ендоплазматичного ретикулума гепатоцитів.

Шляхом взаємодії з УДФ-глюкуроновою кислотою білірубін перетворюється в добре розчинний у воді білірубін-диглюкуронід.

Реакцію кон'югації каталізує УДФ-глюкуронілтрансфераза.

Основна частина білірубіну екскретується в жовч у формі диглюкуронідів; при порушеннях ферментативних властивостей гепатоцитів (паренхіматозні жовтяниці) в крові хворих накопичуються переважно моноглюкуроніди білірубіну.

Білірубін-диглюкуронід переходить у жовч і надходить у кишечник, де бактеріальні ферменти відщеплюють глюкуронову кислоту, після чого відновлюється білірубін до уробіліногену (мезобіліногену) і стеркобіліну. Основна частина стеркобіліногену виділяється з калом, окиснюючись на повітрі до стеркобіліну. Частина уробіліногену і стеркобіліногену всмоктується в кров і виділяється нирками в сечу. При окисненні у повітрі утворюються уробілін і стеркобілін. Уробі­ліноген і стеркобіліноген не мають кольору, а уробілін і стеркобілін оранжево-жовтого кольору. В нормі доросла людина за добу виділяє приблизно 250 мг жовчних пігментів із калом і 1-2 мг із сечею, невеличка частина уробіліногену (мезобіліногену), всмоктуючись, потрапляє через портальну вену в печінку, де розщеплюється до ди- і трипіролів або знову екскретується у жовч.

Основна кількість продуктів перетворення білірубіну в кишечнику – 200-300 мг/добу (близько 95% усіх тетрапірольних сполук) виводиться з організму людини у складі калових мас. Разом з тим, деяка частина жовчних пігментів та продуктів їх біотрансформації всмоктується з кишечника в кров і підлягає подальшим перетворенням.

Стеркобіліноген (основна маса якого виводиться з калом у вигляді стеркобіліну) частково всмоктується в нижніх відділах товстої кишки, звідки потрапляє в загальний кровообіг через судини pl. haemorroidalis, тобто минаючи печінку. З крові цей водорозчинний стеркобіліноген екскретується в сечу у вигляді уробіліну (0-4 мг/добу); ці слідові концентрації пігменту можуть не визначатися в сечі звичайними клініко-біохімічними методами дослідження, і тому вважають, що в сечі здорової людини “уробілін”, як правило, відсутній. Мезобіліноген (уробіліноген) резорбується слизовою оболонкою тонкої кишки і через судини системи v.porta надходить у печінку, де розщеплюється ферментами гепатоцитів до дипірольних сполук, які остаточно екскретуються з організму через жовч. За умов порушення бар’єрної функції печінки (паренхіматозні жовтяниці) розщеплення мезобіліногену в печінці не відбувається, внаслідок чого цей пігмент надходить у кров і виділяється нирками також під назвою уробіліну сечі, що додається до уробіліну, який є продуктом всмоктування стеркобіліногену.

 

ПАТОБІОХІМІЯ ЖОВТЯНИЦЬ

Накопичення жовчних пігментів в крові та інших рідинах організму внаслідок їх надлишкового утворення чи порушення виведення з організму надає інтенсивного забарвлення шкірі. Такий стан називається жовтяницею.

Жовтяниця виникає при збільшенні в крові білірубіну вище 35 мкмоль/л і характеризується жовтим забарвленням шкіри, слизової оболонки, склери внаслідок відкладення в них жовчних пігментів.

Визначення концентрації жовчних пігментів у крові й сечі має важливе значення для диференціальної діагностики жовтяниць різного походження. Концентрація білірубіну в крові здорової людини дорівнює 8,5-20,5 мкмоль/л (5,0-12,0 мг/л), із них приблизно 75 % припадає на некон'югований білірубін, зв'язаний з альбуміном плазми.

При гемолітичній (надпечінковій) жовтяниці із-за посиленого розпаду гемоглобіну підвищується концентрація в крові непрямого білірубіну, порушується його транспортування до печінки. Така жовтяниця спостерігається при отруєнні деякими хімічними речовинами, зокрема сульфаніламідами, променевому ураженні, переливанні несумісної крові тощо.

Оскільки в цьому випадку зростає утворення в печінці білірубін-диглюкуроніду, то значно підвищується виділення з організму стеркобіліну й уробіліну. Білірубін у сечі не виявляється.

Печінкова (паренхіматозна) жовтяниця розвивається внаслідок ушкодження гепатоцитів, порушується синтетична (кон’югаційна) функція печінки, здатність печінки утворювати білірубін-диглюкуронід і секретувати його в жовч.

У результаті пошкодження паренхіми печінки жовч надходить не тільки в жовчні капіляри, а й у кров, де збільшується концентрація і прямого, і непрямого білірубіну. Виведення стеркобіліну й уробіліну знижується. У сечі виявляється прямий білірубін.

При закупоренні жовчних проток і блокаді відтоку жовчі спостерігається обтураційна (підпечінкова) жовтяниця. Переповнені жовчні канальці травмуються і пропускають білірубін у кров'яні капіляри.

У крові з'являється велика кількість прямого білірубіну, в меншій мірі збільшується концентрація непрямого білірубіну. Кількість уробіліногену в сечі знижу­ється (або він повністю відсутній), а у великій кількості екскретується із сечею прямий білірубін. Через це сеча за кольором стає подібною до пива з яскраво-жовтою піною. Кал, у якому відсутні жовчні пігменти, стає сірувато-білим.

У новонароджених дітей обмежена здатність утворювати білірубін-диглюкуронід і в крові може різко зростати концентрація непрямого білірубіну. Здатність печінки кон'югувати білірубін швидко зростає протягом перших декількох днів життя і тому жовтяниця новонароджених дітей у більшості випадків самовільно зникає.

 

Знешкодження токсичних речовин у печінці

 

В організм із навколишнього середовища потрапляють у невеликих кількостях різноманітні хімічні речовини, як природні, так і синтетичні, що не використовуються з пластичною метою чи для продукції енергії. Їх називають сторонніми речовинами або ксенобіотиками. До них відносяться харчові додатки, ліки, пестициди, гербіциди, інсектициди, косметичні засоби, хімічні продукти побутового користування, промислові отрути. В організмі вони можуть порушувати нормальні процеси обміну речовин, викликати отруєння і навіть смерть.

Реакції знешкодження токсичних та інактивації біологічно активних речовин перебігають, головним чином, у печінці. Процес знешкодження токсичних речовин поділяють на дві фази. У першій фазі біологічної трансформації ксенобіотики піддаються реакціям окиснення, відновлення, гідролізу й іншим, в результаті чого у молекулах з'являються полярні функціональні групи (‑ОН, -СООН, -SН, -С=О, -NН2). У другій фазі до функціональної групи ксенобіотика приєднуються глюкуронова чи сірчана кислоти, амінокислоти, метильна чи ацетильна групи, трипептид глутатіон. Це так звані реакції кон'югації, вони каталізуються специфічними ферментами. Утворені кон'югати добре розчинні у воді і легко виводяться з організму. Для більшості токсичних сполук процес знешкодження включає реакції обох фаз, але у деяких випадках тільки одну фазу – першу чи другу.

Метаболічні перетворення ксенобіотиків каталізуються і немікросомальними ферментами. Зокрема, мітохондріальні амінооксидази каталізують окиснювальне дезамінування амінів до відповідних альдегідів. Крім екзогенних, їх субстратами є ендогенні аміни (катехоламіни, серотонін, гістамін) та аміни, які утворюються при гнитті амінокислот у кишечнику (кадаверин, путресцин, агматин). Ряд амінооксидаз зустрічається у плазмі крові. Фермент цитоплазми алкогольдегідрогеназа каталізує окиснення первинних спиртів до альдегідів, альдегідоксидаза і альдегіддегідрогеназа перетворюють альдегіди на карбонові кислоти. Мікросомальні і немікросомальні естерази каталізують гідроліз складних ефірів і амідів.