Медицина

МЕТАБОЛІЗМ ЛІПІДІВ

МЕТАБОЛІЗМ ЛІПІДІВ. ОКИСНЕННЯ ТА БІОСИНТЕЗ ТРИАЦИЛГЛІЦЕРОЛІВ, ЖИРНИХ КИСЛОТ. БІОТРАНСФОРМАЦІЯ ХОЛЕСТЕРОЛУ. МЕТАБОЛІЗМ КЕТОНОВИХ ТІЛ

 

Ліпіди — це група органічних речовин, що входять до складу живих організмів і характеризуються нерозчинністю у воді та розчинністю в неполярних розчинниках, таких як ефір, хлороформ та бензол. Це визначення об'єднує велику кількість сполук різних за хімічною природою, зокрема таких як жирні кислоти, воски, фосфоліпіди,стероїди та ін.

Енергетична функція – ліпіди найбільш енергоємні речовини і незамінне джерело поліненасичених ЖК та розчинних у жирах вітамінів А, Д, Е, К. При окисненні в організмі1 г жиру виділяється 9 ккал (37,66 кДж). За рахунок жирів забезпечується 25-35% добової потреби в енергії.

Регуляторна функція – ліпіди є важливими факторами регулювання обміну води в організмі. При окисненні 100 г жиру виділяється 107 г ендогенної води, що має особливе значення в екстремальних умовах (наприклад, при недостатньому надходженні води ззовні).

Пластична функція – ліпіди входять до складу клітинних і позаклітинних мембран усіх тканин у вигляді ліпопротеїдів і таким чином беруть участь у окисно-відновних процесах - біосинтезі білка, транспорті речовин у клітині. Із ліпідів утворюються деякі гормони (статеві, кори наднирників), а також вітаміни групи Д.

Захисна функція – ліпіди шкіри і внутрішніх органів захищають організм людини і тварин від переохолодження (заважають віддачі тепла), а також від механічних пошкоджень органів. Ліпіди, що виділяються сальними залозами, надають шкірі еластичність і захищають її від висихання.

Структурна функція - жир знаходиться в складних ліпідах або утворює міцні сполуки з білками (ліпопротеїнові комплекси). Вони містяться у крові, беруть участь у побудові клітинних органел (ядра, рибосом, мітохондрій).

Ліпіди поділяються на прості, складні і похідні ліпідів.

Травлення і всмоктування ліпідів

У ротовій порожнині ліпіди не перетравлюються, оскільки у слині відсутні відповідні ферменти. В шлунку є ліпаза, яка каталізує гідроліз жиру до гліцерину і жирних кислот, але вона практично неактивна при низьких значеннях рН. Оптимальне значення рН для дії шлункової ліпази – 5,5. Тому розпад жирів під дією ліпази шлунка відбувається у дітей грудного віку, в яких рН шлункового соку близько 5,0. Крім того, ліпаза діє на емульговані жири, а жири молока є високомолекулярними. Основним місцем травлення жирів та інших груп ліпідів є верхні відділи тонкого кишечника.

Для забезпечення нормального травлення і всмоктування продуктів розпаду ліпідів має значення взаємодія чотирьох чинників:

1) секреція підшлунковою залозою гідролітичних ферментів, які каталізують розрив складноефірних зв'язків;

2) надходження жовчних кислот, які емульгують жири і забезпечують всмоктування продуктів їх гідролізу;

3) захоплення продуктів травлення ліпідів клітинами слизової оболонки кишечника;

4) перетворення продуктів травлення у частинки для транспорту від клітин слизової у лімфатичні судини і далі – в кров.

Порушення будь-якого із цих процесів і ураження кишечника призводять до розладу всмоктування ліпідів. Головним симптомом таких розладів є виведення із калом великої кількості нерозщепленого жиру або солей жирних кислот (мил). Кал у таких випадках має характерний сірувато-білий колір. Цей симптом називається стеатореєю. Звичайно стеаторея супроводжується тяжкою діареєю, при якій організм втрачає воду й електроліти. Одночасно порушується всмоктування інших компонентів їжі, зокрема жиророзчинних вітамінів. І нарешті, при тривалому захворюванні внаслідок недостатнього надходження в організм жирів як джерела енергії розвивається кахексія. Диференціальна діагностика причин порушення травлення і всмоктування ліпідів проводиться на основі аналі¬зу вмісту в калі нерозщепленого жиру чи продуктів його розпаду, тобто мил.

Катаболізм  жирів

       Найбільшу енергетичну роль в організмі людини та тварин відіграють нейтральні жири — триацилгліцероли (тригліцериди) — складні ефіри гліцерину та вищих карбонових (жирних) кислот, що є, разом з вуглеводами, головними  джерелами АТФ, необхідної для всіх ендергонічних функцій клітин та цілісного організму. Різні класи складних ліпідів та похідні стеринів виконують численні  структурні та регуляторні функції.

Близько 95 % всієї біологічно доступної енергії у молекулі три¬ацилгліцеринів містять у собі залишки трьох кислот із довгим вуглецевим ланцюгом, і лише 5 % енергії припадає на частку гліцерину. Спочатку триацилгліцерини розпадаються на гліцерин і жирні кислоти. Обидва компоненти окиснюються до СО2 і Н2О, що супроводжується виді¬ленням енергії.

Процес ліполізу, що відбувається в адипоцитах жирової тканини, каталізується трьома ферментами — тригліцерид-, дигліцерид- та моногліцеридліпазою. Активність двох останніх ферментів (E2 та E3) в декілька десятків разів перевищує активність першого ферменту (E1). Звичайно загальна швидкість багатоступеневого метаболічного ланцюга контролюється активністю ферменту, що каталізує найбільш повільну (лімітуючу) стадію процесу. Тому такий фермент є регуляторним, і, дісно, активність тканинної тригліцеридліпази (ТГ-ліпази) регуляється багатьма гормонами, зокрема адреналіном, глюкагоном, інсуліном, соматотропіном.

Адреналін, глюкагон, кортикостероїди і гіпофізарні гормони стимулюють процес гідролізу жирів. Через аденілатциклазну систему адреналін і глюкагон активують триацилгліцеринліпазу, механізм активації – як і при активації глікогенфосфорилази, тобто механізм каскадного підсилення, який включає синтез цАМФ, активацію протеїнкінази і фосфорилювання ліпази.

 Інсулін протидіє активації аденілатциклази цими гормонами і тим самим пригнічує ліполіз. Від¬сутність інсуліну при цукровому діабеті призводить до безконтрольної стимуляції ліпази глюкагоном, адреналіном, гіпофізарними гормонами і мобілізації жирних кислот із жирових депо.

Соматотропін — гормон передньої частки гіпофіза, який також стимулює ліполіз у жировій тканині за умов голодування, але його ліполітична дія суттєво відрізняється від дії катехоламінів та глюкагону. Метаболічні ефекти соматотропіну розвиваються повільно, що свідчить про його значення в поступовій адаптації до голодування.

Молекулярної основою регуляції активності тригліцеридліпази адипоцитів є її ковалентна модифікація шляхом оберненого фосфорилювання —дефосфорилювання.

Фосфорильована форма ТГ-ліпази є каталітично активною, дефосфорильована — неактивною. Фосфорилювання відповідного білка здійснюється за рахунок АТФ при участі ферменту цАМФ-залежної протеїнкінази. У свою чергу, збільшення внутрішньоклітинної концентрації цАМФ є результатом взаємодії зі специфічними рецепторами плазматичних мембран адипоцитів адреналіну або глюкагону, що призводить до активації мембранозв’язаної аденілатциклази. Дефосфорилювання каталітично активної ТГ-ліпази фосфатазою призводить до утворення неактивної молекулярної форми ферменту.

Окиснення гліцерину

     Гліцерол, що утворюється при розщепленні триацилгліцеролів або гліцерофосфоліпідів, може вступати на шлях катаболізму (окиснення) або знову використовуватися для біосинтезу різних класів гліцеридів.

Гліцерин захоплюється переважно печінкою. Тут під дією гліцеролкінази він перетворюється у гліцерофосфат, який окиснюється до діоксіацетонфосфату гліцеролфосфатдегідрогеназою.

Діоксіацетонфосфат – проміжний продукт гідролізу і глюконеогенезу і тому може або окиснюватися в реакціях гліколізу і далі по загальному шляху катаболізму до СО2 і Н2О, даючи при цьому енергію, або вступати у реакції глюконеогенезу, перетворюючись у глюкозу чи глікоген. Окиснення гліцерину в анаеробних умовах приводить до виділення двох молекул АТФ (як і в гліколізі), але враховуючи, що одна молекула АТФ була використана для активації гліцерину, енергетичний баланс рівний одній молекулі АТФ.

При повному окисненні гліцерину в аеробних умовах до СО2 і Н2О енергетичний баланс складає 22 молекули АТФ. Із них 9 АТФ утворюються в дихальному ланцюзі з 3-х молекул НАДН2. Одна молекула НАДН2 – при окисненні гліцерофосфату, друга – з гліцеральдегідтрифосфату, а третя молекула НАДН2 утворюється під час перетворення піровиноградної кислоти в ацетил КоА. Окиснення останнього до СО2 і Н2О супроводжується виділенням 12 АТФ.

Окиснення жирних кислот

На початку ХХ століття Кнооп дослідив, що відщеплення дво¬вуглецевих фрагментів відбувається за бета-схемою, коли окиснюється бета атом вуглецю жирної кислоти і в результаті утворюються бета-кетокислота, яка далі зазнає розщеплення з утворенням двовуглецевого фрагмента (напевно, оцтової кислоти) і жирної кислоти, коротшої на 2 атоми вуглецю за вихідну кислоту. Тому Кнооп назвав цей процес бета-окисненням жирних кислот.

А. Реакція активації жирних кислот під дією ацил-КоА-синтетаз і за рахунок використання енергії АТФ. Цей процес відбувається в цитоплазмі. Відомо декілька ферментів, локалізованих у зовнішній мембрані мітохондрій і в ендоплазматичній сітці, які специфічні для жирних кислот із різною довжиною вуглеводневого ланцюга.

Б. Перенесення ацильних залишків із цитозолю у матрикс мітохондрій, де локалізовані ферменти бета-окиснення. Цей процес здійснюється за допомогою низькомолекулярного карнітину.

В. Реакції  бета-окиснення.

1. Дегідрування по альфа- і бета-вуглецевих атомах жирної кислоти за допомогою ФАД-залежної ацил-КоА-дегідрогенази.

2. Гідратація еноїл-КоА; фермент еноїл-КоА-гідратаза.

3. Друга реакція дегідрування; фермент – НАД+-залежна бета-оксіацил-КоА-дегідрогеназа.

4. Тіолазна реакція; фермент – тіолаза, або ацетил-КоА-ацилтранс¬фераза.

Ці чотири реакції складають один цикл бета-окиснення. Ацил-КоА, який став на два атоми вуглецю коротшим, знову вступає у цикл бета-окиснення з наступним відщепленням ацетил-КоА. Так повторюється до повного розпаду жирної кислоти на ацетил-КоА. Наприклад, при бета-окисненні пальмі¬тинової кислоти (С15Н31СООН, число атомів вуглецю n=16) ¬утворюються 8 молекул ацетил-КоА (n/2) і мають місце 7 циклів (n/2-1), тому що ацил із 4 атомів вуглецю (бутирил-КоА) окиснюється і розпадається до двох молекул ацетил-КоА. Сумарне рівняння для пальмітинової кислоти таке:

Відновлені коферменти передають атоми водню на дихальний ланцюг, де за рахунок окиснювального фосфорилювання утворюються АТФ (1 ФАДН2 – 2 АТФ, 1 НАДН2 – 3 АТФ). Оскільки при кожному циклі утворюються 1 ФАДН2 і 1 НАДН2, а при розпаді пальмітинової кислоти відбуваються 7 циклів, то утворюється 7×5=35 молекул АТФ. На другому етапі окиснення всі молекули ацетил-КоА окиснюються у циклі лимонної кислоти і ацетил-КоА дає при цьому 12 молекул АТФ. При розпа¬ді пальмітинової кислоти утворюються 8 ацетил-КоА, що забезпечують синтез 8 ×12=96 молекул АТФ. Звідси вихід АТФ при повному окисненні 1 молекули пальмітинової кислоти до СО2 і Н2О складе 96+35-1 (для активації)=130 молекул.

Порівняймо вихід АТФ при окисненні вуглеводів і жирних кислот. Для порівняння візьмемо стеаринову кислоту, яка має 18 атомів вуглецю (С17Н35СООН), і 3 молекули глюкози, щоб була однакова кількість атомів вуглецю. При окисненні 1 моля глюкози утворюються 38 АТФ, із 3 молів – 38 ×3=114 молів АТФ. При окисненні 1 моля стеаринової кислоти утворюються [(8 ×5)+(9 ×12)-1]=147 молів АТФ.

Таким чином, енергетична ємність жирних кислот значно більша, ніж глюкози.

Окиснення ненасичених жирних кислот

Механізм окиснення такий же, як при окисненні насичених кислот, але процес включає додаткові реакції. Поступове відщеплення ацетил КоА від ненасиченої жирної кислоти призводить до утворення ¬еноїл¬ КоА, в якому подвійний зв'язок розміщений у положенні між 3 і 4 атомами вуглецю і має цис-конфігурацію. Еноїл-КоА, який утворюється при окисненні насичених жирних кислот, як розглянуто вище, має подвій¬ний зв'язок між 2 (альфа) і 3(бета) атомами вуглецю, причому у транс-конфігурації. Існує специфічна ізомераза, яка переміщає подвійний зв'язок із положення 3 4 у положення 2-3, а також змінює конфігурацію подвій¬ного зв'язку із цис- у транс-конфігурацію. Утворений еноїл-КоА перетворюється далі шляхом бета-окиснення.

Окиснення жирних кислот із непарним числом атомів вуглецю

Більшість природних ліпідів містять жирні кислоти з парним числом атомів вуглецю. У ліпідах багатьох рослин і деяких морських організмів наявні жирні кислоти із непарним числом вуглецевих атомів. Вони піддаються  бета-окисненню, але в останньому циклі утворюється не ацетил-КоА, а пропіоніл-КоА, що має три атоми вуглецю. Пропіоніл-КоА через ряд проміжних продуктів перетворюється до сукциніл-КоА, який окиснюється у циклі Кребса:

Першу реакцію каталізує пропіоніл-КоА-карбоксилаза з коферментом біотином, а другу – метилмалоніл-КоА-мутаза, яка містить дезо-ксіаденозилкобаламін – коферментну форму вітаміну В12. Фермент сприяє переносу  групи на метильний радикал. При порушенні активності метилмалонілмутази внаслідок нестачі в організмі вітаміну В12 або спадкового дефекту апоферменту в крові і сечі з'являються великі кількості метилмалонової і пропіонової кислот.

Синтез жирних кислот

       Біосинтез вищих жирних кислот із подальшим їх включенням до складу триацилгліцеролів жирової та інших тканин — ліпогенез — є метаболічним шляхом, що дозволяє акумулювати в організмі людини та тварин значні енергетичні резерви метаболічного палива.

Процес розпаду жирних кислот, тобто бета-окиснення, полягає у поступовому відщепленні ацетильних груп у вигляді ацетил-КоА. Проте синтез жирних кислот не є зворотним процесом поступового приєднання ацетильних груп за допомогою таких же ферментативних реакцій, а здійснюється іншим шляхом – за участю інших ферментів, коферментів і в іншій частині клітини.

Ферментні реакції біосинтезу жирних кислот з ацетил-КоА, на відміну від їх окиснення, відбуваються в цитоплазмі клітин; основним продуктом цього синтезу є пальмітинова кислота С15Н31СООН.

Вихідна речовина для синтезу жирних кислот – ацетил-КоА. Джерелами ацетил-КоА є розпад глюкози (шляхом гліколізу й окиснювального декарбоксилювання пірувату), бета-окиснення жирних кислот, а також розпад вуглецевих скелетів аміноксилот. Молекули ацетил-КоА не можуть проникати через мітохондріальну мембрану, тому спочатку ацетил-КоА перетворюється в речовину, яка переноситься через мембрану. Такою речовиною є цитрат.

Це реакція, з якої починається цикл лимонної кислоти. В тих умовах, коли цикл Кребса загальмований, що має місце за умов достатнього нагромадження АТФ, цитрат проникає із мітохондрій у цитозоль за допомогою спеціальної транспортної системи і тут розпадається до ацетил-КоА і оксалоацетату під дією ферменту цитратліази.

Перенесення оксалоацетату назад у мітохондрії здійснюється за допомогою піруват-малатного циклу. Функціонування цього циклу призводить також до відновлення НАДФ+ до НАДФН, який використовується під час синтезу жирних кислот. Але безпосереднім субстратом для синтезу жирних кислот служить не ацетил-КоА, а речовина, яка утворюється при карбоксилюванні ацетил-КоА і називається малоніл-КоА. Тому попередньо молекула ацетил-КоА під дією ферменту ацетил-КоА-карбоксилази перетворюється у малоніл-КоА.

Ацетил-КоА-карбоксилаза є регуляторним ферментом і активується цитратом. Таким чином, як тільки в мітохондріях зростає кількість цитрату, він виходить із мітохондрій у цитоплазму і одночасно виступає як попередник ацетил-КоА і активатор ацетил-КоА-карбоксилази.

Безпосередній синтез жирних кислот забезпечує складний ферментативний комплекс – синтетаза жирних кислот (пальмітилсинтетаза). До складу цього комплексу входять 6 ферментів і спеціальний ацилпереносний білок, який має 2 вільні НS-групи. Одна HS-група належить активному залишку цистеїну, а друга – простетичній групі 4-фосфопантотеїну, похідному пантотенової кислоти. Функція ацилпереносного білка в біосинтезі жирних кислот аналогічна функції коензиму А у бета окисненні жирних кислот.

Побудова ланцюга жирної кислоти починається з того, що до однієї HS-групи ацилпереносного білка приєднується ацетильна група із ацетил-КоА, а до другої HS-групи – малонільна група із малоніл-КоА.

Ацетильна й малонільна група взаємодіють у реакції конденсації, при цьому від малонільної групи відщеплюються СО2, завдяки чому двовуглецевий фрагмент, що залишається, швидко з'єднується із ацетильною групою і утворюється ацетоацетильна група, приєднана до одної HS-групи, а друга HS-група стає вільною. Атоми вуглецю із ацетилу стають крайніми в ацетоацетильній групі, а далі – і в цілій жирній кислоті. СО2, який відщеплюється від малоніальної групи, – це той же СО2, що був приєднаний під час синтезу малоніл-КоА. Таким чином, вуглець із вуглекислого газу в ланцюг жирної кислоти не включається.

Наступні реакції синтезу протилежні до реакцій бета-окиснення жирних кислот. Кетогрупа у бета-положенні відновлюється до гідроксильної ¬групи (реакція гідрування), далі відбувається дегідратація з утворенням подвійного зв'язку між 2 і 3 положеннями і знову реакція відновлення подвійного зв'язку. Відновником служить НАДФН. У результаті утворюється залишок жирної кислоти із чотирьох атомів вуглецю, приєднаний до ферменту. Тепер починається новий цикл реакцій, що приводить до зростання ланцюга до 6 атомів вуглецю:

– перенесення малонільної групи, зв'язаної з КоА, на HS-АПБ;

– конденсація із вивільненням СО2, утворенням бета-кетоацилу із 6 атомів вуглецю;

– послідовні реакції відновлення, дегідратації і відновлення.

Далі цикл повторюється і після семи таких циклів утворюється 16-ти-вуглецевий пальмітил, зв'язаний з ферментом, із якого під дією гідролази вивільняється пальмітинова кислота.

Таким чином, вуглецевий скелет жирної кислоти послідовно нарощується від метильного кінця до карбоксильного. А при бета-окисненні ланцюг укорочується на двовуглецеві фрагменти у зворотному напрямку.

Регуляторний фермент у процесі синтезу жирних кислот – ацетил-КоА-карбоксилаза, яка каталізує утворення малоніл-КоА. Активується вона цитратом, тобто тоді, коли в мітохондріях накопичується цитрат, який не надходить у цикл лимонної кислоти, а виходить у цитоплазму. Поява цитрату в цитоплазмі служить сигналом, що цикл лимонної кислоти заповнений "паливом" і надлишок ацетил-КоА повинен запасатися у вигляді жиру.

Гальмує активність ацетил-КоА-карбоксилази пальмітил-КоА, тобто кінцевий продукт синтезу жирних кислот. Пальмітил-КоА гальмує активність і пальмітилсинтетази. Таким чином, накопичення продукту синтезу жирних кислот автоматично блокує процес їх синтезу. Жирні кислоти у вигляді ацил-КоА використовуються для синтезу жирів і фосфоліпідів. Регуляція через вплив на активність ферментів короткочасна. В організмі здійснюється і довготривала регуляція шляхом зміни кількості ферментів. Так, при переході організму на раціон, багатий вуглеводами чи бідний жирами, в печінці зростає синтез ферментів ацетил-КоА-карбоксилази, пальмітилсинтетази, цитратліази, а також ферментів пентозофосфатного шляху, що забезпечують утворення відновленого НАДФН2.

Наступним фактором, що контролює синтез і розпад жирних кислот, є рівень енергії в клітинах (енергетичний заряд клітини). Так, високі концентрації АТФ гальмують окиснення жирних кислот та стимулюють синтез жирних кислот і далі утворення із них жирів і фосфоліпідів. І навпаки, коли клітинні запаси енергії низькі (висока концентрація АДФ), збільшується швидкість окиснення жирних кислот та пригнічується їх синтез.

Обмін холестерину

Холестерин їжі всмоктується в кишечнику в складі міцел із жовчними кислотами, моноацилгліцеринами, вільними жирними кислотами.

Кількість холестерину, яка всмоктується у кишечнику людини, обмежена (до 0,5 г за день). Надлишок холестерину, що надходить з їжею, виводиться з фекаліями у формі копростанолу, який утворюється під дією ферментів мікроорганізмів. У клітинах слизової кишечника холестерин етерифікується й ефіри холестерину в складі хіломікронів транспортуються до тканин. Хіломікрони віддають жири жировій тканині, а залишки хіломікронів захоплюються печінкою, де холе¬стерин вивільняється. У гепатоцитах також синтезується холестерин. Отже, печінка служить і головним джерелом холестерину, і головним центром розподілу холестерину в організмі.

Біотрансформація холестерину в інші біологічно активні сполуки стероїдної природи здійснюється за рахунок введення в молекулу стеролу додаткових гідроксильних груп та реакцій модифікації в бічному ланцюзі. Реакції окисного гідроксилювання стероїдів каталізуються ферментами монооксигеназами (оксигеназами мішаної функції).

Процес перебігає за участю цитохрому Р-450 у мембранах ендоплазматичного ретикулума гепатоцитів (“мікросомальне окислення”) або в мітохондріях наднирникових залоз та клітин статевих залоз.

1. Біосинтез жовчних кислот.

У гепатоцитах холестерин перетворюється на жовчні кислоти — важливі компоненти жовчі, що беруть участь у перетравленні харчових жирів у кишечнику людини і тварин. Жовчні кислоти є гідроксильованими похідними холанової кислоти; до них належать такі сполуки: холева (3,7,12-триоксихоланова), дезоксихолева (3,12-діоксихоланова), хенодезоксихолева (3,7-діоксихоланова) та літохолева (3-оксихоланова) кислоти.

2. Біосинтез стероїдних гормонів

Стероїдні гормони містять у своєму складі 21 (кортикоїди, прогестерон) і менше (19 — андрогени, 18 — естрогени) атомів вуглецю, тому їх утворення з С27-стероїду холестерину включає, крім окисного гідроксилювання, і розщеплення вуглеводневого бічного ланцюга, реакції окислення, відновлення та ізомеризації. Першим етапом на шляху синтезу з холестерину стероїдних гормонів надниркових залоз (кортикостероїдів) є утворення С21-стероїду прегненолону — безпосереднього попередника прогестагену прогестерону (С21), який у клітинах надниркових залоз перетворюється на кортикостероїди (С21): глюкокортикоїд кортизол та мінералокортикоїд альдостерон.

Гормони чоловічих та жіночих статевих залоз також утворюються з холестерину через стадію прегненолону та прогестерону, який у цих органах перетворюється в 17-α-гідроксипрогестерон — попередник андрогену (С19) — тестостерону та естрогенів (С18) — естрону та естрадіолу.

3. Біосинтез вітаміну D3.

Перетворення холестерину у вітамін D3 — холекальциферол — потребує розщеплення кільця циклопентанпергідрофенантрену з утворенням провітаміну D3, якийпідлягає реакціям окисного гідроксилювання з утворенням біологічно активної форми вітаміну — 1,25-дигідроксихолекальциферолу (кальцитріолу).

Синтез холестерину

Вихідною речовиною для синтезу холестерину, як і для синтезу жирних кислот і кетонових тіл, служить ацетил-КоА. Вся складна поліциклічна молекула холестерину утворюється повністю із ацетильних залишків ацетил-КоА. Вихідною речовиною для синтезу холестерину, як і для синтезу жирних кислот і кетонових тіл, служить ацетил-КоА.

Перші дві реакції аналогічні, як при утворенні кетонових тіл. Далі бета-оксиметилглутарил-КоА відновлюється до мевалонової кислоти під дією регуляторного ферменту бета-окси-бета-метилглутарил-КоА-редуктази.

На другій стадії синтезу холестерину мевалонова кислота фосфорилюється за рахунок 3 молекул АТФ, декарбоксилюється з утворенням молекул, які мають 5 атомів вуглецю і називаються "активними ізопренами". Для синтезу холестерину необхідно 6 таких ізопренових частинок, тобто 6 молекул мевалонової кислоти. Послідовно конденсуючись, шість ізопренових одиниць утворюють лінійну молекулу із 30 атомів вуглецю, що має назву сквален. На третій стадії вона циклізується, перетворюючись у похідне циклопентанпергідрофенантрену – ланостерин. Під дією монооксигеназної системи мембран ендоплазматичного ретикулуму в стероїдному кільці утворюється гідроксильна група. Далі ланостерин через ряд проміжних продуктів у результаті втрати трьох метильних груп перетворюється у холестерин.

За добу в організмі людини синтезується 0, 5 - 1, 0 г холестерину. Близько 80 % цієї кількості синтезується у печінці, решта – у клітинах слизової тонкого кишечника, шкіри, надниркових залозах, нервовій тканині. Ферменти, необхідні для синтезу холестерину, є у всіх клітинах, за винятком еритроцитів.

Синтез холестерину регулюється декількома механізмами. Зокрема, за принципом негативного зворотного зв'язку холестерин як кінцевий продукт гальмує активність чи пригнічує синтез регуляторного ферменту метаболічного шляху – бета-окси-бета-метил¬глутарил-КоА-редуктази, першого специфічного на цьому шляху ферменту.

Активність редуктази гальмує також продукт її реакції – мевалонова кислота. При значному надходженні холестерину з їжею в організмі пригнічується синтез ендогенного холестерину. Крім того, цей регуляторний фермент може знаходитись у фосфорильованій (неактивній) і дефосфорильованій (активній) формах. Глюкагон через аденілатциклазну систему знижує ¬активність редуктази, а інсулін, навпаки, підвищує. Таким чином, при голодуванні, коли секреція глюкагону підвищується, синтез холестерину загальмовується, а при споживанні значної кількості вуглеводів і жирів під дією інсуліну – стимулю¬ється. Порушення регуляції біосинтезу холестерину є одним із факторів, що впливають на розвиток атеросклерозу.

 

Регуляція біосинтезу холестерину

      Лімітуючим етапом у процесі біосинтезу холестерину є реакція утворення мевалонату з β-ГОМК, що каталізується β-ГОМК-редуктазою. Гальмування швидкості процесу здійснюється за принципом негативного зворотного зв’язку, коли накопичення кінцевого продукту анаболічного шляху — холестерину зменшує швидкість його утворення. Інгібітором ферменту є холестерин або холестериновмісний ліпопротеїн ЛПНЩ . Відповідно до таких механізмів, споживання холестерину з їжею гальмує його утворення в печінці, а безхолестеринова дієта, навпаки, активує ендогенний синтез холестерину в гепатоцитах.

Молекулярні механізми регуляції β-ГОМК-редуктазної реакції включають у себе як ковалентну модифікацію ферменту (фосфорильована форма — неактивна, а дефосфорильована — активна), так і вплив біохімічних модуляторів на швидкість синтезу (ферментна індукція) або деградацію ферменту. Інсулін та гормони щитовидної залози збільшують активність β-ГОМК-редуктази, а глюкагон та глюкокортикоїди — зменшують.

Метаболізм кетонових тіл

До кетонових тіл відносять ацетооцтову кислоту (ацетоацетат), бета оксимасляну кислоту (бета-оксибутират) і ацетон. Синтезуються вони в печінці із ацетил-КоА. Останній утворюється при розпаді вуглеводів, жирних кислот і амінокислот, але переважно для синтезу кетонових тіл використовується ацетил-КоА, що утворюється із жирних кислот. Ацетоацетат і бета-оксибутарат надходять із печінки у кров і транспортуються як водорозчинні сполуки до позапечінкових тканин. Там бета-оксибутарат окиснюється до ацетоацетату, який перетворюється в активну форму – ацетоацетил-КоА. У тканинах є 2 шляхи активації ацетоацетату. У першому ацетоацетат перетворюється в ацетоацетил-КоА в реакції з сукциніл-КоА. У другому шляху ацетоацетил-КоА утворюється в реакції з КоА при участі АТФ та ферменту ацетоацетил КоА-синтетази.

У нормі в печінці утворюється невелика кількість кетонових тіл, які дифундують у кров і швидко утилізуються периферичними тканинами. Концентрація кетонових тіл у крові – не більше 30 мг/л. Окиснення кетонових тіл відбувається у серцевому і скелетних м'язах, нирках і навіть, при тривалому голодуванні, у мозку. Таким чином, біологічний зміст утворення кетонових тіл полягає в тому, що частина ацетил-КоА, який утворюється при бета-окисненні жирних кислот у печінці, не окиснюється тут, а направляється у формі кетонових тіл в інші органи і тканини як додаткове джерело енергії. Знову, як і у випадку з глюкозою, печінка служить органом, що постачає в інші тканини й органи клітинне паливо.

Вміст кетонових тіл у крові в біля 10-20 мг/л. При голодування і цукровому діабеті їх рівень різко підвищується (кетонемія). Збільшується їх виділення з сечею (кетонурія). Причиною кетонемії є зменшення утилізації ацетил-КоА в ЦТК при порушенні вуглеводного обміну. Входження ацетил-КоА в ЦТК потребує оксалоацетату, який синтезується з пірувату, а основним постачальником його є гліколіз. При зменшенні в клітині глюкози оксалоацетат використовується на глюконеогенез, а ацетил-КоА - на кетогенез. Сприяє накопиченню ацетил-КоА і стимуляція ліполізу в жировій тканині. Ці закономірності пояснюють давній вислів "Жири згоряють у полум'ї вуглеводів". При відсутності лікування концентрація ацетонових тіл у хворих на цукровий діабет зростає в десятки разів, супроводжуючись зміщенням реакції в кислу сторону, небезпечним для головного мозку.

Кетоацидо́з — це патологічний стан організму, при якому спостерігається висока концентрація кетонових тіл, що формуються внаслідок активного розщеплення жирних кислот та дезамінуванням амінокислот. При кетоацидозі утворюються переважно ацетоацетонова кислота та β-гідоксибутират.

 

Гіперліпопротеїнемії. Атеросклероз

 У плазмі крові знаходяться вільні жирні кислоти, жири (триацилгліцерини), фосфоліпіди, холестерин і його ефіри. При цьому вільні жирні кислоти переносяться у вигляді комплексів з альбуміном, а жири, фосфоліпіди, холестерин і холестериди – у складі ліпопротеїнів. Підвищення чи зниження концентрації у плазмі крові певних класів ліпопротеїнів супроводжується відповідною зміною концентрації жирів, холестерину і фосфоліпідів. У клінічній практиці значно частіше зустрічаються гіперліпопротеїнемії (гіперліпідемії). За причинами розвитку розрізняють первинні (генетичні) і вторинні (аліментарні та внаслідок інших захворювань) гіперліпопротеїнемії. Дієта, багата висококалорійними продуктами, і надлишкова маса тіла сприяють маніфестації первинних захворювань.

При високій концентрації хіломікронів і пре-бета-ліпопротеїнів (типи І, IV, V гіперліпопротеїнемій) має місце значно збільшений рівень триацилгліцеринів, а концентрація холестерину може знаходитись у межах норми (3,9-5,5 ммоль/л) чи помірно збільшуватись. Спостерігаються ожиріння, ксантоматоз і, значно рідше, атеросклероз. Типи ІІ і ІІІ гіперліпопротеїнемій характеризуються різким зростанням концентрації в крові холестерину і тому проявляються атеросклеротичними порушеннями.

Рівень ЛНГ, а значить, і холестерину, значно зростає при гіпофункції щитоподібної залози, гіперфункції кори надниркових залоз, ураженнях нирок. При цукровому діабеті, панкретитах, гепатиті, хронічному алкого¬лізмі концентрація ЛНГ підвищується менше, а значно зростає рівень ЛДНГ. Таким чином, зростання вмісту в плазмі крові холестерину в складі ЛНГ і, меншою мірою, ЛДНГ підвищує ризик розвитку атеросклеротичного процесу.

 Атеросклероз — хронічне захворювання, що уражає переважно великі артеріальні судини; здебільшого спостерігається у людей похилого віку.

Атеросклероз характеризується ущільненням артеріальної стінки за рахунок розростання сполучної тканини через відкладення жовтої жирової речовини на поверхні стінок артерій, утворенням «атеросклеротичних бляшок». Потік крові зменшується і збільшується кров'яний тиск, що може привести до інфаркту, інсульту та деяких інших захворювань у середньому і літньому віці.