Загальні принципи регуляції метаболічних процесів

ЗАГАЛЬНІ ПРИНЦИПИ РЕГУЛЯЦІЇ МЕТАБОЛІЧНИХ ПРОЦЕСІВ В ОРГАНІЗМІ ЛЮДИНИ. ГОРМОНИ, ЗАГАЛЬНА ХАРАКТЕРИСТИКА, КЛАСИФІКАЦІЯ. ГОРМОНИ ГІПОФІЗА

 

В організмі людини нараховується приблизно 100 трильйонів клітин різної будови і призначення, які формують цілий ряд високоспеціалізованих тканин, органів і систем. Єдність і цілісність функцій і реакцій орга­нізму забезпечується тим, що всі процеси, які перебігають у клітинах, тканинах, органах і системах органів, взаємозв'язані і взаємопідлеглі. Цей взаємозв'язок зумовлений наявністю в організмі двох систем регуляції і узгодження функцій: нервової і гормональної (ендокринної). Нервова система подібна до складної телефонної сітки, яка з допомогою дротів з'єднує джерело інформації з місцем її отримання і дії. Ендокринна система використовує кровообіг для передачі інформації у формі високоспе­­ціалізованих хімічних речовин, що називаються гормонами; ця система є "бездротовою".

Класифікація гормонів

Існують морфологічна, хімічна, фізіологічна класифікації гормонів. За морфологічною класифікацією гормони розділяють залежно від місця їх синтезу, наприклад, гормони гіпофіза, щитовидної залози, підшлункової залози, надниркових залоз, статевих залоз тощо. Але ряд фактів не відповідають такому поділу. Так, статеві гормони утворюються в різних місцях: статевих залозах, корі надниркових залоз. Деякі гормони гіпоталамуса наявні в інших відділах мозку, шишкоподібній залозі, шлунково-кишковому тракті. А головним є те, що не тільки в ендокринних залозах, а майже у всіх органах і тканинах організму є клітини, в яких синтезуються гормони. Ці клітини різних органів об'єднуються в АПУД-систему і називаються апудоцитами. Апудоцити виробляють катехоламіни, гістамін, серотонін, мелатонін, деякі гормони гіпофіза, гастрин, секретин тощо.

За хімічною природою гормони поділяються на такі групи:

1) білково-пептидні (прості білки, складні білки, пептиди);

2) стероїдні;

3) похідні амінокислот (непептидні).

Більшість гормонів відноситься до білково-пептидних. Стероїдну структуру мають гормони кори надниркових залоз і статеві гормони, а похідними амінокислот є тиреоїдні гормони щитовидної залози і гормони мозкового шару надниркових залоз. Можна виділити ще четверту групу гормонів – похідні арахідонової кислоти (простагландини, тромбоксани і лейкотрієни). Білково-пептидні гормони, на відміну від інших гормонів, мають видову специфічність.

За біологічними функціями гормони ділять на такі групи:

1. Гормони, що регулюють обмін вуглеводів, жирів, амінокислот: інсулін, глюкагон, глюкокортикоїди, адреналін.

2. Гормони, що регулюють водно-сольовий обмін: альдостерон, вазопресин, ангіотензин, натрійуретичний фактор передсердя.

3. Гормони, що регулюють обмін кальцію і фосфатів: паратгормон, кальцитонін, активні форми вітаміну D.

4. Гормони, що відповідають за репродуктивну функцію організму: андрогени, естрогени, прогестерон, гонадотропні гормони, пролактин.

5. Гормони, що регулюють функції периферичних ендокринних залоз: гормони гіпоталамуса, тропні гормони гіпофіза.

У цій класифікації не враховується поліфункціональність ряду гормонів. Наприклад, адреналін регулює не тільки обмін речовин, але й частоту серцевих скорочень, кров'яний тиск, зменшує спазм бронхів. Деякі гормони не включені в класифікацію за функціями, оскільки викликають різні зміни, серед яких не виділено первинних (тироксин, соматотропін).

Механізм дії гормонів

Механізм дії гормонів залежить від здатності їх проникати через плазматичну мембрану клітини. Водорозчинні гормони білково-пептидної природи, а також адреналін не проходять через плазматичну мембрану, а взаємодіють із специфічними мембранними рецепторами. Внаслідок взаємодії включаються внутрішньоклітинні шляхи передачі інформації, які регулюють метаболізм клітини та різноманітні клітинні процеси. На рівні плазматичної мембрани передача інформації здійснюється шляхом послідовної зміни конформації мембранних білків (рецепторного, сполучного) і ферменту. Останній розміщений із внутрішньої сторони мембрани і каталізує утворення низькомолекулярної речовини – вторинного посередника, месенджера. Дифузія вторинного посередника забезпечує швидке поширення сигналу по всій клітині до конкретних ферментів чи інших білків, які реалізують відповідь клітини на первинний сигнал – гормон чи іншу речовину (наприклад, ліки, бактеріальний токсин), що здатні зв'язуватись із гормональним рецептором плазматичної мембрани.

Безпосередньою мішенню дії вторинних посередників служать ферменти протеїнкінази, які шляхом фосфорилювання активують чи інгібують специфічні клітинні білки. Усі складові компоненти складають систему (каскад) і забезпечують ефективну передачу і підсилення відповідного гормонального сигналу.

Першою була відкрита аденілатциклазна месенджерна система, в якій вторинним посередником є циклічний АМФ. Структура цАМФ, реакція синтезу, яку каталізує мембранозв'язана аденілатциклаза, і реакція розпаду під дією фосфодіестерази розглянуті раніше. Сигнал з гормональних рецепторів на аденілатциклазу передають G-білки двох типів: Gs‑білок активує аденілатциклазу, а Gi-білок гальмує. G-білки обох типів складаються з альфа-, бета- і гама-субодиниць, причому відрізняються альфа-субодиницями, мають центри зв'язування ГТФ і ГДФ та здатні гідролізувати зв'язаний ГТФ до ГДФ і неорганічного фосфату. До включення системи G-білок містить зв'язаний з альфа-субодиницею ГДФ і не взаємодіє з аденілатциклазою.

Приєднання гормону зумовлює конформаційні зміни рецептора і G‑білка. Останній швидко зв'язує ГТФ замість ГДФ і в такій формі змінює активність аденілатциклази (активує чи гальмує, залежно від типу). Одно­часно стимулюється ГТФазна активність G-білка і після переходу ГТФ у ГДФ активація аденілатциклази припиняється. Білок-рецептор, G-білок і каталітична субодиниця аденілатциклази разом складають аденілатциклазний комплекс. Трансмембранна передача сигналу комплексом завершується утворенням цАМФ. Далі передача сигналу пов'язана з дією цАМФ на внутрішньоклітинні компоненти аденілатциклазної системи (рис. 4.2).

Через активацію аденілатциклазної системи реалізується дія адреналіну (при зв'язуванні з бета-рецепторами), глюкагону, АКТГ, ТТГ, гонадотропних та ряду інших гормонів. В кожному випадку зростання всередині клітин-мішеней концентрації цАМФ зумовлює активацію протеїнкіназ типу А і фосфорилювання ними специфічних білків, а також ферментів. цАМФ-залежне фосфорилювання зумовлює активацію або інгібування ключових ферментів різних метаболічних циклів. Робота аденілатциклазної системи детально описується при розгляді регуляції обміну глікогену, де адреналін запускає каскадний процес активації глікогенфосфорилази та інактивації глікогенсинтетази. Багатостадійність системи має важливе значення, оскільки в такому каскадному процесі початковий гормональний сигнал зазнає багатократного підсилення.

При дії на клітини-мішені соматостатину, ангіотензину II, нейрогормонів енкефалінів і ендорфінів, а також при зв'язуванні катехоламінів з альфа2-рецепторами сигнал від рецептора передається через Gі-білки, що зумовлює гальмування активності аденілатциклази, зниження рівня в клітині цАМФ і активності відповідних протеїнкіназ.

На аденілатциклазний шлях передачі сигналу в клітину впливають деякі бактеріальні екзотоксини. Наприклад, токсин, який утворює холер­ний вібріон, каталізує реакцію переносу АДФ-рибози з НАД на альфа-ланцюг Gs-білка (реакція рибозилювання), що переводить білок у постійно активний стан з втратою чутливості до гормональних сигналів. Внаслідок цього в клітинах кишечника зростає рівень цАМФ, який викликає інтенсивну секрецію кишкового соку. Тому при холері швидко настають важка діарея і дегідратація організму. Екзотоксин коклюшу каталізує рибозилювання альфа-субодиниці Gi-білка, що зумовлює блокаду передачі гальмів­них сигналів від гормональних рецепторів на аденілатциклазу. В результаті активність аденілатциклази і рівень цАМФ в клітинах також зростають. Друга система передачі гормональних сигналів – фосфоінозитидна – складніша за аденілатциклазну. В ній використовується комбінація трьох вторинних посередників – інозитолтрифосфату, діацилгліцеролу і іонів Са2+ (рис.). Перші дві сполуки утворюються при гідролізі мембранного фосфоліпіду фосфатидилінозитол-4,5-дифосфату.

Реакцію каталізує фосфоліпаза С, яка переходить в активний стан у результаті приєднання гормону до рецептора. Сигнал від рецептора до фосфоліпази С також передають G-білки.

Через фосфоінозитидну систему реалізується дія катехоламінів (при їх зв'язуванні з альфа1-адренорецепторами), тироліберину, гонадоліберину, вазопресину, ангіотензину II, гастрину, холецистокініну, брадикініну та інших гормонів.

Вторинні посередники фосфоінозитидної системи діють синергічно на клітинні функції, але механізм їх дії різний. Водорозчинний інозитолтрифосфат (IФ3) дифундує у цитозоль, зв'язується з рецепторами мембрани ендоплазматичного ретикулума і зумовлює вихід іонів Са2+ через кальцієві канали. В результаті в цитоплазмі швидко зростає рівень іонів Са2+, які зв'язуються з специфічними внутрішньоклітинними білками і активують Са2+-залежні протеїнкінази. Іони Са2+ можуть бути внутрішньоклітинним посередником передачі інформації і без активації фосфоінозитидної системи, коли концентрація їх у цитоплазмі зростає внаслідок надходження ззовні через кальцієві канали плазматичної мембрани, які відкриваються в результаті зміни трансмембранного потенціалу чи під впливом певних регуляторних молекул. Проте функціональна активність іонних каналів залежить від протеїнкіназного фосфорилювання білків-компонентів каналів.

Інший вторинний посередник фосфоінозитидної системи – діацилгліцерол – переводить в активний стан мембранозв'язану протеїнкіназу С, яка фосфорилює білки, специфічні для кожного типу клітин. Активність протеїнкінази С додатково стимулюють іони Са2+ і фосфатидилсерин – компонент мембран. Спільна дія Са2+- залежних протеїнкіназ і протеїнкінази С зумовлює активацію шляхом фосфорилювання ряду клітинних білків, які беруть участь у реалізації повноцінної клітинної відповіді (секреції гормонів, нейромедіаторів, ферментів, скорочення м'язів, агрегації тромбоцитів, регуляції процесів метаболізму, транспорту іонів, глюкози та інших речовин через мембрани).

Припинення передачі гормонального сигналу через фосфоінозитидну систему здійснюється завдяки інактивації вторинних посередників і дефосфорилюванню фосфорильованих білків. Від інозитолтрифосфату (ІФ3) поступово шляхом гідролізу відщеплюються фосфатні групи:

Перетворення інозитолмонофосфату у вільний інозитол під дією ферменту інозитолмонофосфату інгібують іони літію. Тому надходження літію в організм призводить до порушень обміну фосфоінозитидів і послаблення залежних від них процесів. Цей ефект іонів Li+ лежить, вірогідно, в основі терапевтичної дії їх при маніакально-депресивних психозах.

Діацилгліцерол інактивується двома шляхами. Частина його перетворюється у фосфатидну кислоту, а інша розщеплюється до вихідних компонентів – гліцерину і жирних кислот, зокрема арахідонової – ­попередника простагландинів і лейкотрієнів. Із фосфатидної кислоти і інозитолу синтезується фосфатидилінозитол і далі фосфатидилінозитол-4,5-дифосфат. Для цього використовуються молекули ЦТФ і АТФ. На схемі показано цикл обміну інозитолфосфоліпідів, який об'єднує утворення вторинних посередників для передачі зовнішних сигналів, їх ін­активацію і ресинтез вихідного субстрату.

Передача сигналів через фосфоінозитидну систему супроводжується зростанням концентрації в клітині ще одного вторинного посередника – циклічного ГМФ. Синтезується цГМФ під дією гуанілатциклази. Активують гуанілатциклазу арахідонова кислота, яка вивільняється при розщепленні діацилгліцеролу і фосфоліпідів мембран, та продукти її перетворення – простагландини і лейкотрієни. цГМФ активує протеїнкіназу G, що, як і протеїнкінази А, С і Са2+-залежні, фосфорилює ряд клітинних білків. Під дією цГМФ гальмується процес передачі сигналу через фосфо­інозитидну систему, що забезпечує негативний зворотний зв'язок у ній.

ГОРМОНИ ГІПОТАЛАМУСА

В різних ділянках (нейронах) гіпоталамуса синтезуються гіпоталамічні регуляторні гормони – рилізинг-фактори  або, за сучасною номенклатурою, ліберини і статини. За хімічною структурою це – низькомолекулярні пептиди. Гормони гіпоталамуса проникають у кров ворітної системи гіпофіза і з нею надходять в аденогіпофіз. Виділення їх гіпоталамусом здійснюється під впливом нервових імпульсів, а також внаслідок змін концентрацій у крові певних гормонів (за принципом зворотного зв'язку). В табл. 1 наведені відомі на даний час гіпоталамічні гормони та їх біологічні ефекти. Ліберини стимулюють секрецію гормонів гіпофіза, а статини – гальмують. Для гіпоталамічних гормонів виявлено "перикривання ефектів", наприклад, тиреоліберин стимулює секрецію не тільки ТТГ, а і пролактину; соматостатин гальмує секрецію, крім гормону росту, також ТТГ, інсуліну, глюкагону, гастрину, секретину. Водночас сомато­статин пригнічує секрецію соляної кислоти у шлунку, панкреатичного соку, перистальтику ШКТ, впливає на ЦНС. Соматостатин відкритий у різних відділах мозку, утворюється також D-клітинами острівців Лангерганса підшлункової залози, клітинами епітелію шлунка і кишечника. Механізм численних ефектів соматостатину інтенсивно вивчається.

Гормони гіпофіза

Розрізняють гормони передньої, проміжної і задньої частини гіпофіза. Задня частина є похідною від нервової системи (нейрогіпофіз), і в ній гормони не утворюються, а надходять по аксонах нервової клітини із гіпоталамуса. Тут вони депонуються і виділяються в кров'яне русло. Обидва гормони нейрогіпофіза (вазопресин і окситоцин) за хімічною структурою є низькомолекулярними пептидами, як і гіпоталамічні ліберини і статини. Синтез гормонів передньої частки аденогіпофіза і виведення її у кров запускається ліберинами гіпоталамуса через аденілатциклазну систему. Аденогіпофіз – це не одна залоза, а комплекс залоз, кожна з яких складається з особливого типу клітин і секретує свій гормон. За хімічною структурою гормони аденогіпофіза відносяться до білково-пептидних: АКТГ-поліпептид; соматотропін і пролактин – прості білки, а ТТГ, ФСГ і ЛГ – складні білки (глікопротеїни). До білкової частини остан­ніх входять 2 субодиниці, а вуглеводні ланцюги закінчуються залишками ­сіалової кислоти. При їх відщепленні гормони захоплюються клітинами печінки і там розпадаються.

Соматотропін (соматотропний гормон (СТГ), гормон росту (ГР))

Соматотропіни є видоспецифічними білками, тому біологічна дія тваринних соматотропінів у людей не проявляється. ГР людини складається із 191 амінокислоти і містить 2 дисульфідних зв'язки. Первинна структура його визначена. Отримують соматотропін людини біотехнологічним ­методом. ГР виділяється гіпофізом безперервно протягом всього життя організму. Секрецію його стимулює соматоліберин, а пригнічує соматостатин.

ГР стимулює соматичний ріст органів і тканин організму, зокрема кісток, хрящів, м'язів. В основі його дії лежить вплив на обмін речовин, що здійснюється в 3-х напрямках:

1. Надходження амінокислот із крові в тканини і синтез білка, пригнічення катаболізму білків і амінокислот. Під дією ГР підвищується синтез РНК і ДНК.

2. ГР стимулює ліполіз жирів у жировій тканині, підвищує рівень жирних кислот у крові і їх утилізацію в тканинах. При тривалій дії надлишку ГР розвиваються кетоз, ожиріння печінки.

3. ГР знижує утилізацію глюкози для продукції енергії, частково завдяки підвищеній мобілізації і розпаду жирних кислот. Надходження глюкози в клітини при дії ГР короткочасно (0,5-1 год) стимулюється, і в цей період синтезується глікоген, але далі ефект ГР змінюється на протилежний і транспорт глюкози через мембрани у клітини знижується, а вміст її у крові зростає (діабетогенна дія гормону росту).

Соматотропін стимулює ріст хрящів і кісток не безпосередньо, а через стимуляцію утворення групи поліпептидів. Спочатку їх називали соматомединами, а зараз – інсуліноподібними факторами росту (ІФР). Їх концентрація у сироватці крові залежить від ГР. Найбільш вивчений ІФР‑1 (соматомедин С), який складається із 70 амінокислот. Основним місцем його синтезу вважають печінку. Біологічні ефекти ІФР-1 у хрящовій тканині такі:

1) стимуляція включення сульфату в протеоглікани;

2) стимуляція включення тимідину в ДНК;

3) стимуляція включення проліну в колаген;

4) зростання синтезу РНК і ДНК;

5) мітогенна активність, тобто стимуляція поділу клітин.

Мітогенна активність ІФР-1 проявляється і в культурах клітин інших типів, крім хрящових. Мембранні рецептори ІФР близькі за структурою до інсулінових рецепторів, володіють протеїнкіназною ­активністю і передають гормональний сигнал всередину клітини, стимулюють процеси транскрипції і трансляції. Взаємозв'язки гормон росту – ІФР ще вивчені недостатньо. Невідомо, які із ефектів ГР зв'язані зі стимуляцією продукції ІФР, а які – із дією самого ГР. Безпосередньо ГР впливає на транспорт амінокислот і ліполіз.

При вродженому недорозвитку гіпофіза розвивається гіпофізарна карликовість. Для лікування використовують ГР. У людей із мутацією, що призводить до карликовості Ларона, спостерігається високий рівень ГР у плазмі при низькому вмісті ІФР-1. У таких хворих лікування гормоном росту не стимулює ріст. Карликовість також може бути одним із проявів гіпотиреозу (кретинізму) внаслідок недостатньої секреції передньою частиною гіпофіза тиреотропного гормону. На відміну від цієї патології, гіпофізарні карлики не відстають у розумовому розвитку і не мають ознак деформації скелета.  Надмірна продукція ГР у періоді до статевого дозрівання і до завершення окостеніння зумовлює гігантизм – ріст 210‑240 см і більше, не­про­порційно довгі кін­ців­ки. У дорослих при гіперфункції гіпофіза роз­вивається акромегалія: непропорційно інтенсивний ріст окремих частин тіла (пальців рук і ніг, носа, нижньої щелепи, язика, внутрішніх органів). Причиною акромегалії звичайно є пухлина аденогіпофіза.

Пролактин

За хімічною будовою – простий білок, подібний до соматотропіну. Основна функція пролактину – стимуляція утворення молока в жінок, зокрема активація синтезу білків молока (казеїну, лактальбуміну), стимуляція поглинання глюкози тканиною молочної залози і синтезу лактози, жирів. Пролактин стимулює утворення і секрецію молока, а окситоцин – виділення молока при годуванні грудьми. Під час вагітності статеві гормони естрогени і прогестерон перешкоджають початку лактації, блокуючи дію пролактину на молочні залози. Після відторгнення плаценти при пологах і зниження рівня прогестерону зникає гальмування секреції і дії пролактину.

У плаценті виробляється подібний гормон – плацентарний лактоген людини, або соматомамотропін, який стимулює надходження глю­кози в організм плода від периферичних тканин матері.

Кортикотропін (кортикотропний гормон, КТГ)

У базофільних клітинах аденогіпофіза синтезується високомолекулярний білок, глікопротеїн, який служить попередником цілого ряду активних пептидів. Білок-попередник назвали проопіомеланокортином. Він містить приблизно 400 амінокислотних залишків. При обмеженому протеолізі проопіомеланокортину утворюється КТГ (39 амінокислот) і бета‑ліпотропін (91 амінокислота). Останній був відомий давно і вважався жиромобілізуючим гормоном. Зараз встановлено, що бета-ліпотропін розпадається в гіпофізі з утворенням опіатних (морфіноподібних) пептидів – ендорфінів і енкефалінів, що проявляють знеболювальну дію. Вони наявні не тільки у гіпофізі, а і в мозку. Ще одним продуктом розпаду ліпо­тропіну є меланоцитостимулювальний гормон (бета - МСГ).

Кортиколіберин гіпоталамуса індукує транскрипцію гена проопіомеланокортину в клітинах аденогіпофіза і секрецію кортитропіну у кров. Спостерігаються добові коливання секреції, а при стресі – різке її зростання. Під контролем КТГ знаходиться пучкова зона кори надниркових залоз, клітини якої продукують кортизол. Швидкість секреції гіпофізом КТГ регулюється за принципом зворотного зв'язку рівнем кортизолу в організмі. Кортикостероїди знижують секрецію КТГ двома способами:

1) пригнічують секрецію кортиколіберину в гіпоталамусі;

2) діють безпосередньо на гіпофіз, де інгібують транскрипцію гена проопіомеланокортину.

Гальмування секреції КТГ кортизолом може перекриватись іншою регуляторною системою, більш потужною, що діє при стресі. За цих умов секреція КТГ стимулюється, незважаючи на те, що рівень кортизолу в крові високий. Механізми ще мало вивчені. Принципово важливим моментом є те, що всі нервові шляхи, які передають сигнали про біль, емоції, кровотечу, гіпоглікемію, холод, інтоксикацію хімічними речовинами і йдуть від різних ділянок головного мозку, замикаються на нейронах гіпоталамуса, які секретують кортиколіберин, і запускають стереотипну реакцію:

Рецептори КТГ розміщені на плазматичній мембрані клітини пучкової зони кори надниркових залоз. Його дія опосередковується через цАМФ і протеїнкінази. Останні активують ряд ферментів, які беруть участь у синтезі глюкокортикостероїдів. При тривалій дії КТГ на клітини надниркових залоз спостерігаються їх гіпертрофія і гіперплазія. На рівні цілого організму КТГ викликає ті реакції, які характерні для дії кортикостероїдів. Однак КТГ і безпосередньо впливає на тканини, зокрема проявляє меланоцитостимулювальну активність, ліполітичну дію в жировій тканині.

При недостатньому утворенні КТГ спостерігається вторинна гіпофункція кори надниркових залоз. При пухлинах гіпофіза може мати місце гіперпродукція КТГ. Цікаво, що КТГ може синтезуватись і в пухлинних клітинах при деяких формах раку легень, аденокарциномі товстої кишки. У всіх цих випадках розвивається гіперактивність клітин кори надниркових залоз (хвороба Іценко-Кушинга).

Вазопресин (антидіуретичний гормон, АДГ) і окситоцин

Ці два гормони синтезуються у тілах нейронів гіпоталамуса, по аксонах переміщаються до задньої частини гіпофіза і через нервові закінчення виділяються у кров. За хімічною природою – пептиди, утворюються із більших білків-попередників. Пропресофізин дає вазопресин і білок нейрофізин 2, прооксифізин переходить в окситоцин і нейрофізин 1. Біологічна роль нейрофізинів полягає в нековалентному зв'язуванні вазопресину й окситоцину та транспорті їх із гіпоталамуса. У нейрогіпофізі комплекси розпадаються і вільні гормони секретуються у кров.

Дія вазопресину характеризується такими ефектами:

1. Антидіуретична дія. У клітинах ниркових канальців взаємодія АДГ з V2-рецепторами викликає підвищення рівня цАМФ, фосфорилювання поки що невідомих білків, що зумовлює збільшеня проникності мембрани для води, і реабсорбцію води, вільної від іонів, за гра­дієнтом концентрації із гіпотонічної первинної сечі через клітини в позаклітинну рідину. В результаті осмотичний тиск плазми крові і тканинної рідини зменшується і секреція гормону припиняється.

2. Підтримка артеріального тиску. Взаємодія АДГ з V1-­рецепторами гладком'язових клітин в судинах викликає збільшення концентрації іонів кальцію в клітинах і скорочення м'язів, звуження судин, підвищен­ня кров'яного тиску. Пресорний ефект вазопресину спостерігається при дії значної кількості гормону.

3. Участь у механізмах пам'яті. АДГ позитивно діє на закріплення пам'яті й мобілізацію інформації, що зберігається. Клітинні механізми впливу АДГ на ЦНС вивчені недостатньо.

Секреція АДГ регуюється змінами осмотичного тиску і об'єму циркулюючої крові, а також різними нейрогенними стимулами. Специфічні осморецептори мозку реагують на підвищення осмотичного тиску плазми крові і тканинної рідини сигналами про виділення вазопресину в кров і навпаки. При крововтратах, зниженні об'єму крові барорецептори клітин кровоносних судин передають сигналами в ЦНС і стимулюють секрецію АДГ, а також альдостерону. Вивільнення АДГ гальмується адреналіном.

При недостатності АДГ виникає нецукровий діабет, при якому за добу із організму виводиться 10-20 л дуже гіпотонічної сечі. Лікується природним гормоном чи синтетичними аналогами. Відомі препарати з чистою антидіуретичною дією без пресорної активності. Нефрогенний нецукровий діабет зумовлюється втратою здатності рецепторів клітин дистальних відділів нефрону реагувати на АДГ.

Окситоцин проявляє 2 біологічні ефекти: скорочення мускулатури матки і виділення молока. Концентрація рецепторів до окситоцину в гладкій мускулатурі матки зростає під час вагітності і досягає максимуму на ранній стадії родового акту. Естрогени сенсибілізують міометрій до дії окситоцину, а прогестерон знижує. Окситоцин бере участь у початку родів як безпосередньо, викликаючи скорочення м'язів матки, так і опосередковано, стимулюючи утворення простагландинів, які є сильним активаторами скорочення гладких м'язів.Окситоцин використовується у клініці для стимуляції родів. Виділення молока окситоцином стимулюється внаслідок скорочення м'язових волокон, розміщених навколо альвеол молочних залоз.

Гормони підшлункової залози

Ендокринні клітини острівців Лангерганса підшлункової залози синтезують ряд гормонів: А-клітини – глюкагон, В-клітини – інсулін, D‑клітини – соматостатин, F-клітини – панкреатичний поліпептид. Біологічна роль останнього мало вивчена.

Інсулін

Швидкість секреції інсуліну залежить від концентрації глюкози в крові. При нормальному рівні глюкози в крові натще (3,33-5,5 ммоль/л) секреція інсуліну мінімальна. Під час споживання їжі підвищення концентрації глюкози в крові викликає збільшення секреції інсуліну. Механізм регуляторного впливу глюкози на секрецію інсуліну досить складний і зв'язаний зі швидкістю транспорту іонів Са2+ через плазматичну мембрану В-клітин і інтенсивністю гліколізу в них. Конкретний метаболіт глюкози, який активує секрецію інсуліну, поки що невідомий. На швидкість синтезу і секреції інсуліну впливають також гормон росту, глюкагон, адреналін, секретин, холецистокінін, соматостатин, причому, за винятком адреналіну і соматостатину, всі інші збільшують секрецію інсуліну.

Біологічні ефекти інсуліну. Рецептори інсуліну відкриті в ­багатьох типах клітин. Головними мішенями дії інсуліну є клітини м'язів, печінки, жирової тканини. Рецептори локалізовані у плазматичній мембра­ні, за хімічною природою є глікопротеїнами, вуглеводна частина яких знаходиться на зовнішній стороні мембрани. Рецептор складається із 4 субодиниць: дві альфа‑субодиниці зв'язують інсулін, а дві бета-субодиниці є трансмембранними білками з активністю тирозинкінази. При зв'язуванні інсуліну з рецептором стимулюється кіназна активність бета-суб­одиниць і відбувається автофосфорилювання їх, а також фосфорилювання ряду інших білків, що, у свою чергу, індукує активність цілого ряду ферментів. Вірогідно існує декілька вторинних посередників дії інсуліну, зокрема продукти розпаду інозитфосфатидів. Таким чином, інсулін запускає багатокаскадну розгалужену систему регуляторних реакцій.

Період напіврозпаду інсуліну складає приблизно 30 хв. Руйнується він головним чином у печінці інсуліназою. При одноразовому прохо­джен­ні крові через печінку руйнується приблизно 80 % інсуліну.

Біологічні ефекти інсуліну поділяються на 4 групи, залежно від часу, за який вони реалізуються:

1. Дуже швидкі (протягом секунди): підвищення транспорту в клітини та з клітин іонів Н+, К+, Са2+, в результаті чого має місце гіперполяризація мембрани, а також проникнення у клітини глюкози.

2. Швидкі (протягом хвилини): зміна активності ферментів. Інсулін активує ферменти анаболізму (глікогенезу, ліпогенезу, синтезу білків), гальмує ферменти катаболізму білків, жирів і ферменти глюконеогенезу. Під впливом інсуліну підвищується активність фосфатаз, що каталізують дефосфорилювання таких ферментів, як глікогенсинтетаза, глікогенфосфорилаза тощо, активність фосфодіестерази цАМФ, яка розкладає циклічний АМФ.

3. Повільні (хвилини-години): підвищення проникнення в клітини амінокислот, індукція синтезу регуляторних ферментів анаболічних шляхів, репресія синтезу регуляторних ферментів катаболічних шляхів і глюконеогенезу. Механізми вибіркової дії інсуліну на генетичний апарат і транскрипцію окремих генів невідомі.

4. Дуже повільні ефекти (години-дні): стимуляція проліферації клітин (мітогенний ефект). Інсулін діє синергічно з іншими мітогенними факторами.

Дія інсуліну на обмін вуглеводів. 1. Підвищення перенесення глюкози з крові в клітини м'язів, жирової тканини, лімфатичної тканини, печінки тощо. Під впливом інсуліну надходження глюкози в клітини м'язів, що знаходяться в стані спокою, зростає у 15-20 разів. Надхо­дження глюкози в мозок, нерви, мозковий шар нирок, зародковий епітелій сім'яників, клітини ендотелію судин, кришталик не залежить від інсуліну. Точний механізм активації інсуліном транспортної системи для глюкози невідомий.

2. Активація глюкокінази, глікогенсинтетази печінки і в результаті збільшення синтезу глікогену. Також зростає синтез глікогену в м'язах. Інсулін гальмує дію адреналіну і глюкагону на процес глікогенолізу, знижуючи вміст у клітинах цАМФ.

3. Стимуляція гліколізу і використання продуктів розпаду (діоксіацетонфосфату і ацетил-КоА) для синтезу жирів. При тривалій дії інсулін індукує синтез ключових ферментів глюколізу.

4. Гальмування глюконеогенезу завдяки зниженню активності регуляторних ферментів процесу і пригнічення надходження амінокислот із позапечінкових тканин у печінку.

Отже, інсулін пригнічує утилізацію жирів і стимулює їх синтез. Можна зробити висновок, що одна із важливих функцій інсуліну полягає у зміні катаболізму вуглеводів і жирів для забезпечення організму енергією. При високій концентрації глюкози інсулін включає утилі­зацію вуглеводів і гальмує катаболізм жирів. І навпаки, при низькій концентрації глюкози низький вміст інсуліну в крові викликає утилізацію жиру в усіх тканинах, крім мозку.

Дія інсуліну на обмін білків і нуклеїнових кислот.

1. Стимуляція транспорту амінокислот із крові в тканини.

2. Підвищення синтезу білків у тканинах завдяки збільшенню концентрації амінокислот і стимуляції процесу трансляції матричних РНК.

3. Гальмування катаболізму білків, виходу амінокислот із тканини у кров.

4. Інсулін стимулює синтез ДНК і РНК. Збільшення швидкості реплі­кації і транскрипції забезпечує проліферацію клітин.

Таким чином, інсулін стимулює синтез білків і нуклеїнових кислот, зумовлює позитивний азотний баланс. Разом із соматотропіном інсулін стимулює ріст організму.

Глюкагон

Глюкагон – це поліпептид, який складається із 29 амінокислотних залишків. Синтезується з білка-попередника в А-клітинах підшлункової залози: препроглюкагон – проглюкагон – глюкагон.

Після синтезу глюкагон депонується в гранулах і вивільняється в кров шляхом екзоцитозу. Секреція глюкагону гальмується глюкозою, іонами Са2+ та інсуліном. Концентрація глюкагону й інсуліну в крові змінюється протилежним чином: відношення інсулін/глюкагон максимальне під час травлення і мінімальне при голодуванні. Додатковим ­фактором є характер їжі. При споживанні великої кількості білків амінокислоти стимулюють секрецію і глюкагону, і інсуліну. Секреція одного інсуліну може викликати гіпоглікемію, а одночасне звільнення глюкагону компенсує гіпоглікемічний ефект інсуліну, стимулюючи глікогеноліз і глюконеогенез. При споживанні змішаної їжі глюкоза гальмує секрецію глюкагону і попереджує його викид під дією амінокислот.

Органи-мішені для глюкагону: печінка, міокард, жирова тканина, але не скелетні м'язи. Глюкагон взаємодіє з рецепторами, які локалізовані на плазматичній мембрані, що викликає активацію аденілатциклази, збільшення рівня цАМФ і активацію протеїнкіназ. Фосфорилювання регуляторних ферментів під дією протеїнкіназ стимулює одні метаболічні процеси і гальмує інші.

Механізм дії глюкагону

Ефекти глюкагону:

1. Стимулює розщеплення глікогену печінки до вільної глюкози (активація фосфорилази.

2. Пригнічує гліколіз внаслідок гальмування активності фосфо­фруктокінази, піруваткінази, піруватдегідрогенази.

3. Стимулює розщеплення білків, особливо у м'язах, що забезпечує постачання амінокислот для глюконеогенезу.

4. Стимулює глюконеогенез у печінці, що забезпечується надхо­дженням субстратів – амінокислот, гліцерину і активацією ключових ферментів процесу – піруваткарбоксилази, фруктозо-1,6-дифосфатази.

5. Стимулює розщеплення жирів у жировій тканині (активація гормоночутливої ліпази), підвищення рівня жирних кислот у крові і утилізації їх у тканинах.

6. Стимулює утворення кетонових тіл у печінці.

7. Гальмує синтез білків, жирів, фосфоліпідів, холестерину.

8. Збільшує клубочкову фільтрацію.

Таким чином, глюкагон та інсулін є функціональними антагоністами. Ефекти глюкагону – це перша лінія захисту організму від гіпоглікемії в період голодування чи підвищених енергетичних затрат. Глюкоза в цих умовах використовується мозком, а в м'язах і в інших інсулінозалежних тканинах джерелом енергії служать жирні кислоти і кетонові тіла.

Гормони мозкового шару надниркових залоз

Гормони мозкової речовини надниркових залоз адреналін і норадреналін є похідними амінокислоти тирозину. Адреналін, норадреналін і їх попередник дофамін об'єднуються під назвою “катехоламіни”. Вони утворюються не тільки у хромафінних клітинах мозкового шару надниркових залоз, а і в симпатичних нервових закінченнях, де служать медіаторами. Норадреналін функціонує у синапсах постгангліонарних волокон нервової системи і у різних відділах ЦНС. Дофамін і адреналін – медіатори ЦНС.

Синтез катехоламінів регулюється за принципом негативного зворотного зв'язку. Норадреналін гальмує активність тирозингідроксилази, адреналін-метилтрансферази. У хромафінних клітинах мозкової речовини надниркових залоз адреналін і норадреналін накопичуються в секреторних гранулах. Їх синтез і вивільнення у кров шляхом екзоцитозу ре­гулюються нервовими центрами, розміщеними в гіпоталамусі. Збудження симпатичної нервової системи стимулює секрецію катехоламінів, причому спочатку більше вивільняється адреналіну, а при тривалій стимуляції – норадреналіну. Надниркові залози людини містять в нормі адреналіну в 3-10 разів більше, ніж норадреналіну, а концентрація в крові норадреналіну – 5,2 нмоль/л проти 1,9 нмоль/л адреналіну, що зумовлено частковим надходженням норадреналіну в кров із синапсів при стимуляції симпатичних нервів. Вміст катехоламінів у крові зростає дуже швидко (майже у 1000 разів під час стресових реакцій). Із сечею за добу виділяється 11-76 нмоль адреналіну і 47-236 нмоль норадреналіну.

Інактивація гормонів відбувається головним чином у печінці трьома шляхами:

1) метилювання гідроксильної групи у положені 3 катехол-0-метил­трансферазою;

2) окиснювальне дезамінування моноаміноксидазою;

3) кон'югація з глюкуроновою і сірчаною кислотами по 4-оксигрупі.

Суміш продуктів інактивації катехоламінів виводиться з сечею і ­жовчю.

Гормони мозкової речовини надниркових залоз проявляють різноманітні ефекти на організм, які реалізують через взаємодію їх з рецепторами типів альфа- і бета. Адренорецептори за структурою є глікопротеїнами, синтез яких продукується різними генами. Взаємодія адреналіну з бета‑адренорецепторами плазматичної мембрани органів-мішеней активує аденілатциклазу, запускаючи через цАМФ і протеїнкінази каскадний механізм фосфорилювання специфічних білків, зокрема ферментів, що зумовлює клітинну відповідь. Зв'язування адреналіну з альфа2-рецептором призводить до зменшення в клітині цАМФ. При взаємодії катехоламінів з альфа1-рецептором внутрішньоклітинним посередником служить не цАМФ, а продукти гідролізу фосфатидилінозитолу й іони Са2+.

Через аденілатциклазну систему адреналін активує глікогенфосфорилазу печінки і м'язів, триацилгліцеринліпазу жирової тканини, інактивує глікогенсинтетазу. Розпад глікогену печінки забезпечує підвищення рівня глюкози в крові, а розпад жирів у жировій тканині – концентрації жирних кислот. Таким чином, мобілізуються субстрати для використання скелетними м'язами і міокардом для роботи у стресових ситуа­ціях. У м'язових клітинах розпадається як депонований глікоген, так і глюкоза, що надходить з крові, з утворенням молочної кислоти. Саме каскадний механізм дії адреналіну забезпечує швидке включення процесів, які постачають енергію. Дія адреналіну на обмін вуглеводів і ліпідів супроводжується збільшенням на 20-40 % споживання кисню і ще більше – утворення СО2, в результаті чого зростає дихальний коефіцієнт.

Норадреналін має порівняно невеликий вплив на розпад глікогену і споживання кисню, а ліполіз стимулює, як адреналін.