Медицина

ФЕРМЕНТАТИВНЫЕ ПРОЦЕССЫ ПО ТИПУ РЕАКЦИЙ ОСНОВНЫХ КЛАССОВ ФЕРМЕНТОВ

ФЕРМЕНТАТИВНЫЕ ПРОЦЕССЫ ПО ТИПУ РЕАКЦИЙ ОСНОВНЫХ КЛАССОВ ФЕРМЕНТОВ. ЕДИНИЦЫ ИЗМЕРЕНИЯ КАТАЛИТИЧЕСКОЙ АКТИВНОСТИ ФЕРМЕНТОВ. МЕХАНИЗМ ВОЗНИКНОВЕНИЯ ЭНЗИМОПАТИЙ. ЭНЗИМОДИАГНОСТИКА, ЭНЗИМОТЕРАПИЯ.

КЛАССИФИКАЦИЯ И НОМЕНКЛАТУРА ФЕРМЕНТОВ

Согласно Международной классификации, ферменты делят на шесть главных классов, в каждом из которых несколько подклассов: 1) оксидоредуктазы; 2) трансферазы; 3) гидролазы; 4) лиазы; 5) изомеразы; 6) лигазы (синтетазы).

Оксидоредуктазы. К классу оксидоредуктаз относят ферменты, катализирующие с участием двух субстратов окислительно-восстановительные реакции, лежащие в основе биологического окисления. Систематические названия их составляют по форме «донор: акцептор оксидоредуктаза». Например, лактат: НАД+ оксидоредуктаза для лактатдегидрогеназы (ЛДГ). Различают следующие основные оксидоредуктазы: аэробные дегидро-геназы или оксидазы, катализирующие перенос протонов (электронов) непосредственно на кислород; анаэробные дегидрогеназы, ускоряющие перенос протонов (электронов) на промежуточный субстрат, но не на кислород; цитохромы, катализирующие перенос только электронов. К этому классу относят также гемсодержащие ферменты каталазу и пероксидазу, катализирующие реакции с участием перекиси водорода.

Трансферазы. К классу трансфераз относят ферменты, катализирующие реакции межмолекулярного переноса различных атомов, групп атомов и радикалов. Наименование их составляется по форме «донор: транспортируемая группа – трансфераза».

Различают трансферазы, катализирующие перенос одноуглеродных остатков, ацильных, гликозильных, альдегидных или кетонных, нуклеотидных остатков, азотистых групп, остатков фосфорной и серной кислот и др. Например: метил- и формилтрансферазы, ацетилтрансферазы, амино-трансферазы, фосфотрансферазы и др.

Гидролазы. В класс гидролаз входит большая группа ферментов, катализирующих расщепление внутримолекулярных связей органических веществ при участии молекулы воды. Наименование их составляют по форме «субстрат-гидролаза». К ним относятся: зстеразы – ферменты, катализирующие реакции гидролиза и синтеза сложных эфиров; гликозидазы, ускоряющие разрыв гликозидных связей; фосфатазы и пептидгидролазы, катализирующие гидролиз фосфоангидридных и пептидных связей; ами-дазы, ускоряющие разрыв амидных связей, отличных от пептидных, и др.

Лиазы. К классу лиаз относят ферменты, катализирующие разрыв связей С—О, С—С, С—N и других, а также обратимые реакции отщепления различных групп от субстратов не гидролитическим путем. Эти реакции сопровождаются образованием двойной связи или присоединением групп к месту разрыва двойной связи. Ферменты обозначают термином «субстрат-лиазы». Например, фумарат-гидратаза (систематическое название «L-малат-гидролаза») катализирует обратимое отщепление молекулы воды от яблочной кислоты с образованием фумаровой кислоты. В эту же группу входят декарбоксилазы (карбокси-лиазы), амидин-лиазы и др.

Изомеразы. К классу изомераз относят ферменты, катализирующие взаимопревращения оптических и геометрических изомеров. Систематическое название их составляют с учетом типа реакции: «субстрат – цис-транс-изомераза». Если изомеризация включает внутримолекулярный перенос группы, фермент получает название «мутаза».

К этому же классу относят рацемазы и эпимеразы, действующие на амино- и оксикислоты, углеводы и их производные; внутримолекулярные оксидоредуктазы, катализирующие взаимопревращения альдоз и кетоз; внутримолекулярные трансферазы, переносящие ацильные, фосфорильные и другие группы, и т.д.

Лигазы (синтетазы). К классу лигаз относят ферменты, катализирующие синтез органических веществ из двух исходных молекул с использованием энергии распада АТФ (или другого нуклеозидтрифосфата). Систематическое название их составляют по форме «X : Y лигаза», где X и Y обозначают исходные вещества. В качестве примера можно назвать L-глутамат: аммиак лигазу (рекомендуемое сокращенное название «глутаминсинтетаза»), при участии которой из глутаминовой кислоты и аммиака в присутствии АТФ синтезируется глутамин.

ВНУТРИКЛЕТОЧНАЯ ЛОКАЛИЗАЦИЯ ФЕРМЕНТОВ

Вопрос о локализации ферментов в структурных образованиях клетки (ядро, митохондрии, лизосомы и др.) является чрезвычайно важным, особенно в препаративной энзимологии, когда перед исследователем поставлена задача изолировать и выделить фермент в чистом виде. Сравнительно легко обнаружить локализацию фермента методами цито-и гистохимии. Для этого тонкие срезы органа инкубируют с соответствующими субстратами и после инкубации локализацию продукта реакции устанавливают добавлением подходящих реактивов до появления специфической окраски. В препаративной энзимологии чаще пользуются методом дифференциального центрифугирования гомогенатов тканей. Для этого сначала разрушают клеточную структуру с помощью подходящего дезинтегратора и полученную квазиоднородную (гомогенизированную) массу подвергают дифференциальному центрифугированию при температуре 0–4°С. Обычно распределение ферментов изучают в последовательных индивидуальных фракциях, изолированных при дробном центрифугировании гомогенатов, в частности во фракции ядер, которую получают при низкой скорости центрифугирования, во фракции митохондрий, которая осаждается при средней скорости центрифугирования, во фракции микро-сом (или рибосом), для изолирования которой требуется высокая скорость центрифугирования, и, наконец, в оставшейся прозрачной надосадочной жидкости (супернатант), представляющей собой растворимую фракцию цитоплазмы. Следует отметить, что фракция митохондрий не является гомогенной, поскольку из нее удается изолировать частицы, известные как лизосомы, размер которых занимает промежуточное место между размерами митохондрий и микросом. В свою очередь микросомальная фракция также является гетерогенной, поскольку состоит в основном из элементов эндоплазматической сети неоднородного строения. При помощи метода фракционирования гомогенатов органов и тканей в центрифугах было показано, что ядерная фракция печени и почек содержит незначительное число ферментов, хотя известно, что в ядрах осуществляется синтез некоторых белков. Основное место синтеза белка, как теперь установлено,– фракция рибосом цитоплазмы. Показано, кроме того, что ферменты гликолиза сосредоточены преимущественно в растворимой фракции цитоплазмы, в то время как цитохромоксидаза и ферменты

 цикла Кребса локализованы во фракции митохондрий. С митохондриями связаны также ферменты, катализирующие окислительное фосфорилиро-вание и распад жирных кислот. Ферменты, катализирующие биосинтез жирных кислот, наоборот, содержатся в растворимой фракции цитоплазмы. Для изолирования и выделения ферментов из биологических объектов в чистом (гомогенном) состоянии используют весь арсенал методов выделения белков в индивидуальном виде.

СПИСОК ФЕРМЕНТОВ

На основании разработанной системы, которая служит основой как для классификации, так и для нумерации (индексации) ферментов, Международная комиссия подготовила также Классификацию ферментов (КФ) с включением списка ферментов, первоначально состоявшего к 1961 г. примерно из 900 ферментов. В списке ферментов (см. Номенклатуру ферментов, 1978) насчитывалось уже 2142 индивидуальных фермента, к декабрю 1995 г. их идентифицировано более 3500. В списке для каждого фермента, помимо кодового номера (шифра), приводятся систематическое (рациональное) название, рекомендуемое (рабочее) название, химическая реакция, которую катализирует данный фермент, а также примечания о специфичности действия. Номер каждому ферменту рекомендуется присваивать по четырехзначному коду.

Таким образом, код каждого фермента содержит четыре цифры, разделенные точками, и составляется по определенному принципу. Первая цифра указывает номер одного из шести главных классов ферментов. Вторая цифра означает подкласс, характеризующий основные виды субстратов, участвующих в данном типе химических превращений. Например, у трансфераз вторая цифра указывает на природу той группы, которая подвергается переносу, у гидролаз – на тип гидролизуемой связи и т.д. Эти подклассы в свою очередь делятся на более частные подгруппы (подпод-классы), отличающиеся природой химических соединений доноров или акцепторов, участвующих в данной подгруппе реакций. Номер (цифра) подподкласса ставят на 3-е место в шифре фермента. У гидролаз, например, эта цифра уточняет тип гидролизуемой связи, а у лиаз – тип отщепляемой группы и т.д. Первые 3 цифры кода точно определяют тип фермента. Наконец, все ферменты, относящиеся к данному подподклассу, получают порядковый номер в алфавитном порядке, который ставят на 4-е место в шифре. Каждый фермент, характеризующийся постоянной совокупностью 4 цифр, имеет соответствующий код, под которым он внесен в список ферментов. В качестве примера в табл. 4.6 приведены 2 фермента из списка. Следует особо отметить, что Международную классификацию ферментов нельзя считать абсолютно совершенной, поскольку она в некоторых отношениях не соответствует общепринятой в органической химии классификации химических реакций, несмотря на то что ферменты катализируют по существу те же реакции.

ПРИМЕНЕНИЕ ФЕРМЕНТОВ

Обладая высокой степенью избирательности, ферменты используются живыми организмами для осуществления с высокой скоростью огромного разнообразия химических реакций; они сохраняют свою активность не только в микропространстве клетки, но и вне организма. Ферменты нашли широкое применение в таких отраслях промышленности, как хлебопечение, пивоварение, виноделие, чайное, кожевенное и меховое производства, сыроварение, кулинария (для обработки мяса) и т.д. В последние годы ферменты стали применять в тонкой химической индустрии для осуществления таких реакций органической химии, как окисление, восстановление, дезаминирование, декарбоксилирование, дегидратация, конденсация, а также для разделения и выделения изомеров аминокислот L-ряда (при химическом синтезе образуются рацемические смеси L- и D-изомеров), которые используют в промышленности, сельском хозяйстве, медицине. Овладение тонкими механизмами действия ферментов, несомненно, предоставит неограниченные возможности получения в огромных количествах и с большой скоростью полезных веществ в лабораторных условиях почти со 100% выходом.

В настоящее время развивается новая отрасль науки – промышленная энзимология, являющаяся основой биотехнологии. Фермент, ковалентно присоединенный («пришитый») к любому органическому или неорганическому полимерному носителю (матрице), называют иммобилизованным. Техника иммобилизации ферментов допускает решение ряда ключевых вопросов энзимологии: обеспечение высокой специфичности действия ферментов и повышения их стабильности, простоту в обращении, возможность повторного использования, применение их в синтетических реакциях в потоке. Применение подобной техники в промышленности получило название инженерной энзимологии. Ряд примеров свидетельствует об огромных возможностях инженерной энзимологии в различных областях промышленности, медицины, сельского хозяйства. В частности, иммобилизованную β-галактозидазу, присоединенную к магнитному стержню-мешалке, используют для снижения содержания молочного сахара в молоке, т.е. продукта, который не расщепляется в организме больного ребенка с наследственной непереносимостью лактозы. Обработанное таким образом молоко, кроме того, хранится в замороженном состоянии значительно дольше и не подвергается загустеванию.

Разработаны проекты получения пищевых продуктов из целлюлозы, превращения ее с помощью иммобилизованных ферментовцеллюлаз – в глюкозу, которую можно превратить в пищевой продукт – крахмал. С помощью ферментной технологии в принципе можно также получить продукты питания, в частности углеводы, из жидкого горючего (нефти), расщепив его до глицеральдегида, и далее при участии ферментов синтезировать из него глюкозу и крахмал. Несомненно, имеет большое будущее моделирование при помощи инженерной энзимологии процесса фотосинтеза, т.е. природного процесса фиксации СО2; помимо иммобилизации, этот жизненно важный для всего человечества процесс потребует разработки новых оригинальных подходов и применения ряда специфических иммобилизованных коферментов.

В качестве примера иммобилизации ферментов и использования их в промышленности приводим схему непрерывного процесса получения аминокислоты аланина и регенерации кофермента (в частности, НАД) в модельной системе. В этой системе исходный субстрат (молочная кислота) подается при помощи насоса в камеру-реактор, содержащий иммобилизованные на декстране НАД+ и две НАД-зависимые дегидрогеназы: лактат- и аланиндегидрогеназы; с противоположного конца реактора продукт реакции – аланин – удаляется с заданной скоростью методом ультрафильтрации.

ПРОБЛЕМЫ МЕДИЦИНСКОЙ ЭНЗИМОЛОГИИ

Достижения энзимологии находят все большее применение в медицине, в частности в профилактике, диагностике и лечении болезней. Успешно развивается новое направление энзимологии – медицинская энзимология, которая имеет свои цели и задачи, специфические методологические подходы и методы исследования. Медицинская энзимология развивается по трем главным направлениям, хотя возможности применения научных достижений энзимологии в медицине теоретически безграничны, в частности в области энзимопатологии, энзимодиагностики и энзимотерапии.

Область исследований энзимопатологии является теоретической, фундаментальной частью патологии. Она призвана изучать молекулярные основы развития патологического процесса, основанные на данных нарушения механизмов регуляции активности или синтеза индивидуального фермента или группы ферментов. Обладая высокой каталитической активностью и выраженной органотропностью, ферменты могут быть использованы в качестве самых тонких и избирательных инструментов для направленного воздействия на патологический процесс. Как известно, из более чем 5000 наследственных болезней человека молекулярный механизм развития выяснен только у 2-3 десятков. Считают, что развитие болезни чаще всего связано с наследственной недостаточностью или полным отсутствием синтеза одного-единственного фермента в организме больного. Иногда болезни называют также энзимопатиями. Так, галактоземия – наследственное заболевание, при котором наблюдается ненормально высокая концентрация галактозы в крови. Болезнь развивается в результате наследственного дефекта синтеза фермента гексозо-1-фосфат-уридилтрансферазы, катализирующего превращение галактозы в легкометаболизируемую глюкозу. Причиной другого наследственного заболеванияфенилкетонурии, сопровождающейся расстройством психической деятельности, является потеря клетками печени способности синтезировать фермент, катализирующий превращение фенилаланина в тирозин.

Энзимопатология успешно решает и проблемы патогенеза соматических болезней. Созданы крупные научные центры и научно-исследовательские институты, в которых ведутся работы по выяснению молекулярных основ атеросклероза, злокачественного роста, ревматоидных артритов и др. Нетрудно представить огромную роль ферментных систем или даже отдельных ферментов, нарушение регуляции активности и синтеза которых приводит к формированию или развитию патологического процесса.

Второе направление медицинской энзимологии – энзимодиагностика – развивается по двум путям. Один путь – использование ферментов в качестве избирательных реагентов для открытия и количественного определения нормальных или аномальных химических веществ в сыворотке крови, моче, желудочном соке и др. (например, выявление при помощи ферментов глюкозы, белка или других веществ в моче, в норме не обнаруживаемых). Другой путь – открытие и количественное определение самих ферментов в биологических жидкостях при патологии. Оказалось, что ряд ферментов появляется в сыворотке крови при распаде клеток (отсюда их название «некротические ферменты»). Для диагностики органических и функциональных поражений органов и тканей широко применяются отдельные ферментные тесты, выгодно отличающиеся от других химических диагностических тестов, используемых в клинике, высокой чувствительностью и специфичностью. Известно около 20 тестов, основанных на количественном определении активности ферментов (и изоферментов), главным образом в крови (реже в моче), а также в биоптатах (кусочки тканей, полученные при биопсии). Следует отметить, что из огромного числа ферментов (более 3500), открытых в природе (частично и в организме человека), в диагностической энзимологии используется лишь ограниченный набор ферментов и для весьма небольшого числа болезней (гепатиты, инфаркт миокарда, органические поражения почек, поджелудочной железы, печени и др.). Так, уровень липазы, амилазы, трипсина и химотрипсина в крови резко увеличен при сахарном диабете, злокачественных поражениях поджелудочной железы, болезнях печени и др. Резко повышается в сыворотке крови уровень двух аминотрансфераз, креатинкиназы (и ее изо-форм) и лактатдегидрогеназы (и ее изоформ) при инфаркте миокарда; умеренно повышено их содержание при поражениях тканей мозга и печени. Определяют, кроме того, активность кислой фосфатазы (уровень повышен при карциноме предстательной железы), щелочной фосфатазы, холинэсте-разы и некоторых других органоспецифических ферментов (например, гистидазы, уроканиназы, глицинамидинотрансферазы) в сыворотке крови при патологии костной ткани, печени, метастатических карциномах и т. д. Доказано, что органы и ткани человека характеризуются специфическим ферментным и изоферментным спектром, подверженным не только индивидуальным, но и суточным колебаниям. Существует большой градиент концентрации ферментов между внутриклеточными и внеклеточными частями тела. Поэтому любые, даже незначительные, повреждения клеток (иногда функциональные расстройства) приводят к выделению ферментов во внеклеточное пространство, откуда они поступают в кровь. Механизм гиперферментации (повышенное содержание ферментов в крови) до конца не расшифрован. Повышение уровня внутриклеточных ферментов в плазме крови прямо зависит от природы повреждающего воздействия, времени действия и степени повреждения биомембран клеток и субклеточных структур органов. В оценке ферментных тестов для диагностических целей особое значение имеет знание периода полужизни (полураспада) в плазме крови каждого из диагностических ферментов, что делает важным выбор точного времени для ферментного анализа крови. Весьма существенным является также знание особенностей распределения (топографии) ферментов в индивидуальных органах и тканях, а также их внутриклеточной локализации. В последнее время стали применять ферменты рестрикции – специфические эндонуклеазы, катализирующие разрывы межнуклео-тидных связей ДНК, для диагностики фенилкетонурии, α- и β-талассемии и других наследственных болезней человека. Метод основан на полиморфизме рестрикционных фрагментов ДНК. Из представленных данных следует, что диагностическая энзимология может служить основой не только для постановки правильного и своевременного диагноза болезни, но и для проверки эффективности применяемого метода лечения. Дальнейшее развитие диагностической энзимологии преимущественно идет по двум перспективным направлениям медицинской энзимологии: по пути упрощения и рациональной модификации уже испытанных методов и по пути поиска новых органоспецифических (тканеспецифических) ферментов и изоферментов. Третье направление медицинской энзимологии – энзимотерапия, т.е. использование ферментов и модуляторов (активаторов и ингибиторов) действия ферментов в качестве лекарственных средств, имеет пока небольшую историю. До сих пор работы в этом направлении почти не выходят за рамки эксперимента. Исключение составляют некоторые про-теиназы: пепсин, трипсин, химотрипсин и их смеси (абомин, химопсин), которые применяют для лечения ряда болезней пищеварительного тракта. Помимо протеиназ, ряд других ферментов, в частности РНКаза, ДНКаза, гиалуронидаза, коллагеназы, эластазы, отдельно или в смеси с протеина-зами используются при ожогах, для обработки ран, воспалительных очагов, устранения отеков, гематом, келоидных рубцов, кавернозных процессов при туберкулезе легких и др. Ферменты применяются также для лечения сердечно-сосудистых заболеваний, растворения сгустков крови. В нашей стране разработан первый в мире препарат иммобилизованной стрептокиназы, рекомендованный для лечения инфаркта миокарда. Калликреины – ферменты кининовой системы используются для снижения кровяного давления. Важной и многообещающей областью энзимотерапии является применение ингибиторов ферментов. Так, естественные ингибиторы протеиназ (α1-трипсин, α1-химотрипсин, α-макроглобулин) нашли применение в терапии острых панкреатитов, артритов, аллергических заболеваний, при которых отмечается активация протеолиза и фибринолиза, сопровождающаяся образованием вазоактивных кининов. В последнее время получило признание применение в онкологической клинике ферментов бактериальной природы в качестве лекарственных средств. Широко используется L-аспарагиназа (выпускается в промышленных количествах и L-глутамин(аспарагин)аза для лечения острых и хронических форм лейкозов и лимфогранулематозов. Более десятка описанных в литературе бактериальных ферментов испытаны в основном на животных с перевивными опухолями или на раковых клетках опухолей человека и животных, выращенных в культуре ткани. Основными постулатами применения ферментов в онкологии являются различия в метаболизме клеток опухолей по сравнению с обменом в нормальной, здоровой, клетке. В частности, современные стратегия и тактика энзимотерапии опухолевых поражений учитывают разную чувствительность нормальных и опухолевых клеток к недостатку (дефициту) незаменимых (так называемых эссенциаль-ных) факторов роста. К таким ростстимулирующим факторам относятся не только пищевые факторы (витамины, незаменимые аминокислоты, макро-и микроэлементы), но и ряд так называемых заменимых веществ, включая заменимые аминокислоты, к недостатку которых опухолевая клетка оказывается в силу особенностей ее обмена более чувствительной, чем нормальная. Лечебный эффект, например, L-аспарагиназы и L-глутамин (аспарагиназы) при лейкозах, вероятнее всего, объясняется необратимым распадом как глутамина, так и аспарагина. Оказалось, что опухолевые клетки для своего роста и размножения нуждаются в аминокислотах из организма, поскольку сами лишены способности синтезировать амиды аминокислот, в то время как нормальные клетки наделены этой способностью. Был сделан вывод о том, что амидный азот глутамина и аспарагина выполняет в клетках ряд уникальных функций, которые лучше выяснены для глута-мина (см. главу 12). В частности, амидный азот глутамина оказался абсолютно необходимым и не заменимым другими аминокислотами источником атома азота минимум в 10 реакциях синтеза, например, пуриновых и пиримидиновых нуклеотидов, соответственно ДНК и РНК, АТФ, ге-ксозаминов, гистидина и др. Таким образом, не лишена основания гипотеза, что любой фермент или агент, катализирующий необратимое расщепление незаменимого для опухолевой клетки пищевого фактора (включая аминокислоты), может в принципе быть применен в энзимотерапии опухолей, если будут устранены ограничения, связанные с белковой природой фермента. В оценке эффективности ферментов в экспериментальной и клинической онкологии имеется немало противоречий и очень много пробелов. Положительные результаты, отмеченные в ряде случаев, вселяют надежду, что приготовление стандартных ферментных препаратов (включая создание иммобилизованных форм) в промышленных масштабах и их разумное применение в клинике, организованное на строгой научной основе, несомненно дадут в руки врачей еще одно ценное оружие в борьбе с опухолевыми заболеваниями человека. Идея применения ферментов в качестве лекарственных средств (фармакологии ферментов) всегда казалась заманчивой. Однако их нестабильность, короткий период полураспада, нежелательные антигенные свойства, связанные с белковой природой ферментов и опасностью развития аллергических реакций, трудности доставки к пораженным органам и тканям (мишеням) существенно ограничивали возможности использования ферментных препаратов. В разработке методов иммобилизации ферментов (см. ранее) наметились конкретные пути преодоления указанных трудностей: применение водорастворимых, биосовместимых носителей, например полимолочной кислоты (легко разлагается в организме), использование методов химической модификации и микрокапсулирования, приготовление моно- и поликлональных антител и ферментсодержащих липосом и т.д.

ОПРЕДЕЛЕНИЕ АКТИВНОСТИ ФЕРМЕНТОВ

Определение количественного содержания ферментов в биологических объектах представляет известные трудности, поскольку, за редким исключением, ферменты в тканях присутствуют в ничтожно малых концентрациях. Поэтому о количестве ферментов судят по скорости катализируемой реакции в определенных, согласованных условиях измерения. При оптимальных условиях температуры, рН среды и полном насыщении фермента субстратом скорость катализируемой реакции пропорциональна концентрации фермента. О скорости ферментативной реакции судят или по скорости убыли субстрата, или по скорости образования продукта реакции. Для выражения концентрации фермента и количественной оценки его активности в условных единицах Комиссией по ферментам Международного биохимического союза была рекомендована стандартная международная единица (Е или U): за единицу активности любого фермента принимается то количество его, которое в оптимальных условиях катализирует превращение 1 микромоля субстрата или образование 1 микромоля продукта в минуту (мкмоль/мин). В связи с введением Международной системы единиц (СИ) предложено новое выражение активности фермента в каталах (кат, kat): 1 кат есть каталитическая активность, способная осуществлять реакцию со скоростью, равной 1 молю в 1 с (1 моль/с). Отношение международной единицы (U) к каталу можно выразить следующим образом: 1 кат = 1 моль•с–1 = 60 моль•мин–1 = 60•106 мкмоль•мин–1 = 6•107 U, или: 1 U = 1 мкмоль•мин–1 = (1/60) мкмоль•с–1 = (1/60) мккат = 16,67 нкат. Таким образом, 1 U фермента соответствует 16,67 нкат. Рекомендовано, кроме того, измерять активность фермента при температуре 25°С, оптимуме рН и концентрации субстрата, превышающей концентрацию насыщения. В этих случаях скорость соответствует нулевому порядку реакции в отношении субстрата и будет зависеть только от концентрации фермента. Для выражения активности в практической работе с ферментами часто пользуются произвольными понятиями удельной и молярной активности. Удельную активность фермента принято выражать числом единиц ферментативной активности на 1 мг белка (или числом каталов на 1 кг активного белка). Количество молекул субстрата, подвергающихся превращению одной молекулой фермента в продукт в процессе реакции в единицу времени при полном насыщении фермента субстратом, принято называть числом оборотов фермента, или молярной активностью (молярная каталитическая активность выражается в каталах на 1 г-моль фермента). Одна молекула каталазы эритроцитов способна, например, расщепить в 1 с 44000 молекул перекиси водорода.

Oddsei - What are the odds of anything.