Медицина

БИОСИНТЕЗ И КАТАБОЛИЗМ ПУРИНОВЫХ НУКЛЕОТИДОВ

БИОСИНТЕЗ И КАТАБОЛИЗМ ПУРИНОВЫХ НУКЛЕОТИДОВ. ОПРЕДЕЛЕНИЕ КОНЕЧНЫХ ПРОДУКТОВ ИХ ОБМЕНА.

 

Рибонуклеозид- и дезоксирибонуклеозидфосфаты - существеннейшие компоненты клеток.

• Нуклеозидтрифосфаты (НТФ) используются в качестве субстратов синтеза ДНК и РНК, без которых невозможны образование белков и клеточная пролиферация.

• Природа выбрала цикл АДФ-АТФ в качестве универсального механизма трансформации энергии окисления в энергию биосинтетических процессов. В некоторых биологических процессах и другие НТФ используются в качестве источника энергии.

• Производные нуклеотидов служат донорами активных субстратов в синтезе гомо- и гетерополисахаридов, липидов и белков. Например: УДФ-глюкоза, УДФ-галактоза, ГДФ-манноза, УДФ-N-ацетилглюкозамин или ЦМФ-ацетилнейраминовая кислота принимают участие в синтезе гликогена и гликозаминогликанов; ЦДФ-холин - в синтезе фосфолипидов.

•  УДФ-глюкуроновая кислота, ФАФС, S-аде-нозилметионин - наиболее частые участники универсальной системы детоксикации, обеспечивающей последующее выведение ксенобиотиков (чужеродных веществ) и некоторых собственных метаболитов из организма.

•  АМФ входит в состав коферментов дегидрогеназ (NAD+, NADP+, FAD) и ацилирования (KoA).

•  С помощью циклических форм нуклеотидов (цAMФ, цГМФ) осуществляется передача в клетку сигналов гормонов, факторов роста, нейромедиаторов и некоторых других регуляторных молекул.

Практически все клетки организма способны к синтезу нуклеотидов (исключение составляют некоторые клетки крови). Другим источником этих молекул могут быть нуклеиновые кислоты собственных тканей и пищи, однако эти источники имеют лишь второстепенное, вспомогательное значение.

 

ПЕРЕВАРИВАНИЕ НУКЛЕОПРОТЕИНОВ В ЖЕЛУДОЧНО-КИШЕЧНОМ ТРАКТЕ

Пищевые нуклеопротеины, попадая в организм человека, в желудке отщепляют белковый компонент и денатурируют под действием HCl желудочного сока (рис.). Далее полинуклеотидная часть этих молекул гидролизуется в кишечнике до мононуклеотидов.

В расщеплении нуклеиновых кислот принимают участие ДНК-азы и РНК-азы панкреатического сока, которые, будучи эндонуклеазами, гидролизуют макромолекулы до олигонуклеотидов. Последние под действием фосфодиэстераз панкреатической железы расщепляются до смеси 3'- и 5'-мононуклеотидов. Нуклеотидазы и неспецифические фосфатазы гидролитически отщепляют фосфатный остаток нуклеотидов и превращают их в нуклеозиды, которые либо всасываются клетками тонкого кишечника, либо расщепляются нуклеозидфосфорилазами кишечника с образованием рибозоили дезоксирибозо-1-фосфата, пуриновых и пиримидиновых оснований.

Пищевые пурины и пиримидины не являются незаменимыми пищевыми факторами и очень мало используются для синтеза нуклеиновых кислот тканей. В энтероцитах обнаружена высокая активность ксантиноксидазы - фермента, который большую часть пуринов, поступающих в клетки, превращает в мочевую кислоту, удаляющуюся с мочой. Пиримидиновые основания, не успевшие поступить в энтероциты, под действием микрофлоры кишечника расщепляются до NH3, CO2, β-аланина и β-аминоизобутирата.

В различных клетках организма синтезируется до 90% пуриновых и пиримидиновых нуклеотидов из простых предшественников de novo. Введённые в кровь азотистые основания и нуклеозиды, а также основания и нуклеозиды, образующиеся в результате внутриклеточного разрушения нуклеиновых кислот, в небольшом количестве могут использоваться для повторного синтеза нуклеотидов по так называемым «запасным» путям.

 

БИОСИНТЕЗ ПУРИНОВЫХ НУКЛЕОТИДОВ DE NOVO

ОБРАЗОВАНИЕ 5-ФОСФОРИБОЗИЛ-1-ДИФОСФАТА

Фосфорибозилдифосфат (ФРДФ), или фосфорибозилпирофосфат (ФРПФ) занимает центральное место в синтезе как пуриновых, так и пиримидиновых нуклеотидов (рис. 10-2).

Он образуется за счёт переноса β,γ-пирофосфатного остатка ATФ на рибозо-5-фосфат в реакции, катализируемой ФРДФ-синтетазой.

Источниками рибозо-5-фосфата могут быть: пентозофосфатный путь превращения глюкозы или катаболизм нуклеозидов, в ходе которого под действием нуклеозидфосфорилазы первоначально образуется рибозо-1-фосфат, а затем с помощью соответствующей мутазы фосфатный остаток переносится в 5-положение.

ФРДФ участвует не только в синтезе пуриновых и пиримидиновьгх нуклеотидов из простых предшественников (т.е. de novo), но используется на образование пуриновых нуклеотидов по «запасному» пути и в синтезе нуклеотидных коферментов.

Сборка пуринового гетероцикла осуществляется на остатке рибозо-5-фосфата при участии различных доноров углерода и азота (рис. 10-3).

Описание: Описание: Описание: Описание: http://vmede.org/sait/content/Biohimija_severin_2009/10_files/mb4_021.jpeg

Рис. Образование 5-фосфорибозил-1-дифосфата.

 

Включение простых предшественников в пуриновое кольцо с образованием ИМФ

Первая специфическая реакция образования пуриновых нуклеотидов - перенос амидной группы Глн на ФРДФ с образованием 5-фосфорибозил-1-амина (рис.). Эту реакцию катализирует фермент амидофосфорибозилтрансфераза. При этом формируется β-Ν-гликозидная связь.

Затем к аминогруппе 5-фосфорибозил-1-амина присоединяются остаток глицина, N5, N10-мете-нил-Н4-фолата ещё одна амидная группа глута-мина, диоксид углерода, аминогруппа аспартата и формильный остаток N10-формил Н4-фолата.

Результатом этой десятистадийной серии реакций является образование первого пуринового нуклеотида - инозин-5'-монофосфата (ИМФ), на синтез которого затрачивается не менее шести молекул АТФ. В отличие от прокариотов, у которых каждую стадию этого процесса катализирует отдельный фермент, у эукариотов за счёт слияния генов возникли полифункциональные ферменты, каждый из которых катализирует несколько реакций. В синтезе пуриновых нуклеотидов de novo это реакции 3, 4 и 6, 7-8 и 10-11 соответственно.

ИМФ в основном используется на синтез АМФ или ГМФ. Небольшое количество этого продукта обнаруживается также в тРНК в качестве одного из минорных нуклеотидов.

Превращение ИМФ в АМФ и ГМФ в обоих случаях включает 2 стадии и идёт с затратой энергии (рис. 10-5).

Аденилосукцинатсинтетаза, используя энергию ГТФ, присоединяет аспартат к ИМФ с образованием аденилосукцината, который в реакции, катализируемой аденилосукциназой, отщепляет фумарат и превращается в АМФ.

Второй пуриновый нуклеотид (ГМФ) образуется также в 2 стадии. Сначала ИМФ окисляется NАD+-зависимой ИМФ-дегидрогеназой с образованием ксантозин-5 -монофосфата (КМФ). Последующее трансамидирование гидроксиль-ной группы при С2-пуринового кольца КМФ катализирует ГМФ-синтетаза с использованием амидной группы Глн и энергии АТФ.

При образовании пуриновых нуклеотидов ГТФ расходуется на синтез АМФ, а АТФ - на синтез ГМФ. Перекрёстное использование пуриновых нуклеозидтрифосфатов на образование конечных продуктов синтеза помогает поддерживать в клетках баланс адениловых и гуаниловых нуклеотидов.

Печень - основное место образования пуриновых нуклеотидов, откуда они могут поступать в ткани, не способные к их синтезу: эритроциты, ПЯЛ и частично мозг.

Описание: Описание: Описание: Описание: http://vmede.org/sait/content/Biohimija_severin_2009/10_files/mb4_008.jpeg

Рис. Происхождение атомов С и N в пуриновом кольце.

 

Образование нуклеозидди- и трифосфатов

В образовании нуклеиновых кислот, некоторых коферментов и во многих синтетических процессах нуклеотиды используются в виде ди-и трифосфатов, синтез которых катализируют ферменты класса трансфераз. АМФ и ГМФ превращаются в нуклеозиддифосфаты (НДФ) с помощью специфичных к азотистому основанию нуклеозидмонофосфаткиназ (НМФ-киназ) и АТФ. Так, аденилаткиназа катализирует реакцию:

амф + атф → 2 адф, а гуанилаткиназа:

гмф + атф → гдф + адф.

Аденилаткиназа особенно активна в печени и мышцах, где высок уровень энергоёмких процессов. Функция этого фермента заключается в том, чтобы поддерживать в тканях равновесие фонда адениловых нуклеотидов: AMФ, AДФ и ATФ.

Взаимопревращения нуклеозиддифосфатов и нуклеозидтрифосфатов осуществляет нуклео-зиддифосфаткиназа. Этот фермент в отличие от НМФ-киназ обладает широкой субстратной специфичностью и, в частности, может катализировать реакцию:

гдф + атф → гтф + адф.

Превращение AДФ в ATФ происходит, в основном, за счёт окислительного фосфорилирования или в реакциях субстратного фосфо-рилирования гликолиза или цитратного цикла.

В. «ЗАПАСНЫЕ» ПУТИ СИНТЕЗА ПУРИНОВЫХ НУКЛЕОТИДОВ (РЕУТИЛИЗАЦИЯ АЗОТИСТЫХ ОСНОВАНИЙ И НУКЛЕОЗИДОВ)

Описание: Описание: Описание: Описание: Описание: Описание: Описание: Описание: Описание: Описание: Описание: Описание: Описание: http://www.xumuk.ru/biologhim/bio/img1098.jpg

 

Рис. Синтез пуриновых нуклеотидов de novo.

Описание: Описание: Описание: Описание: http://vmede.org/sait/content/Biohimija_severin_2009/10_files/mb4_006.jpeg

Рис. 10-5. Синтез АМФ и ГМФ из ИМФ. 1 - аденилосукцинатсинтетаза; 2 - аденилосукциназа; 3 - ИМФ-дегидрогеназа; 4 - ГМФ-синтетаза.

 

Огромные затраты энергии для синтеза пуриновых нуклеотидов de novo не способны полностью обеспечить субстратами синтез нуклеиновых кислот в период гаструляции и раннего роста ребёнка. Потребность в большом количестве нуклеотидов привела к развитию «запасных» путей синтеза этих «дорогих» молекул. Наибольшее значение в этом процессе имеют ферменты, осуществляющие превращение пуринов в мононуклеотиды с использованием ФРДФ как донора остатка фосфорибозы.

Синтез АМФ и ГМФ из аденина и гуанина ФРДФ-зависимое фосфорибозилирование пуринов катализируют 2 фермента.

Аденинфосфорибозилтрансфераза, ответственная за образование АМФ (рис.). Гипоксантин-гуанинфосфорибозилтрансфераза, катализирующая образование ИМФ и ГМФ из гипоксантина и гуанина соответственно (рис. 10-7).

Однако в организме при любых ситуациях этот путь синтеза пуриновых нуклеотидов, получивший название «путь спасения», имеет вспомогательное значение.

Описание: Описание: Описание: Описание: http://vmede.org/sait/content/Biohimija_severin_2009/10_files/mb4_010.jpeg

Рис. Фосфорибозилирование аденина в АМФ.

Описание: Описание: Описание: Описание: http://vmede.org/sait/content/Biohimija_severin_2009/10_files/mb4_015.jpeg

Рис. Фосфорибозилирование гипоксантина и гуанина с образованием ИМФ и ГМФ.

 

Нуклеозидкиназы

Нуклеозиды, получающиеся при катаболизме нуклеиновых кислот из нуклеотидов под действием нуклеотидаз, могут повторно фосфорилироваться, образуя нуклеозид-5 -монофосфаты за счёт переноса γ-фосфатного остатка АТФ на соответствующий субстрат. У млекопитающих такой путь пополнения запасов пуриновых нуклеотидов в клетке не имеет существенного значения. Основным ферментом этой группы является аденозинкиназа, которая ускоряет реакцию:

Аденозин + АТФ → АМФ + АДФ.

Из всех способов реутилизации пуринов наиболее активна гипоксантин-гуанинфосфорибозилтрансферазная реакция, поскольку ИМФ, образующийся в этой реакции, вовлекается в синтез АМФ и ГМФ. Использование гипоксантина и гуанина по запасному пути становится жизненно важным событием в клетках, не способных к синтезу пуриновых нуклеотидов de novo. Значение аденинфосфорибозилтрансферазы в повторном использовании аденина менее существенно. По сравнению с аденозином количество аденина в клетках мало, а первый возвращается в фонд нуклеотидов с помощью аденозинкиназы.

Г. РЕГУЛЯЦИЯ СИНТЕЗА ПУРИНОВЫХ НУКЛЕОТИДОВ

Основным показателем, от которого зависит синтез пуриновых нуклеотидов, служит концентрация ФРДФ, которая, в свою очередь, зависит от скорости его синтеза, утилизации и разрушения. Количество ФРДФ определяется доступностью рибозо-5-фосфата и активностью ФРДФ синтетазы - фермента, чувствительного к концентрации фосфата и пуриновых нуклеотидов.

Внутриклеточная концентрация ФРДФ строго регулируется и обычно низкая. ФРДФ синтетаза - аллостерический фермент. Он активируется неорганическим фосфатом (Pi) и ингибируется пуриновыми нуклеозидмоно-, ди- и трифосфатами, которые по эффективности ингибирования распределяются в следующем порядке: НМФ > НДФ > НТФ (рис. 10-8). ФРДФ служит не только субстратом, но и аллостерическим активатором второй реакции синтеза пури-нонуклеотидов de novo, которую катализирует амидофосфорибозилтрансфераза.

Пуриновые нуклеотиды, особенно АМФ и ГМФ по механизму отрицательной обратной связи ингибируют амидофосфорибозилтрансферазу, которая катализирует первую специфическую реакцию синтеза пуриновых нуклеотидов de novo.

Метаболическая цепь образования АМФ и ГМФ de novo регулируется также в месте её разветвления: АМФ ингибирует аденилосукци-натсинтетазу, а ГМФ - реакцию образования ксантиловой кислоты, которую катализирует ИМФ дегидрогеназа. Перекрёстная регуляция путей использования ИМФ служит для того, чтобы снизить синтез одного пуринового нуклеотида при дефиците другого.

Помимо ферментов основного пути синтеза пуриновых нуклеотидов de novo, регулируется также активность ферментов «запасных» путей: аденинфосфорибозилтрансфераза ингибируется АМФ, а гипоксантин-гуанинфосфорибозил-трансфераза - ИМФ и ГМФ.

 

Катаболизм пуриновых нуклеотидов

У человека основной продукт катаболизма пуриновых нуклеотидов - мочевая кислота. Её образование идёт путём гидролитического отщепления фосфатного остатка от нуклеотидов с помощью нуклеотидаз или фосфатаз, фосфоролиза N-гликозидной связи нуклеозидов пуриннуклеозидфосфорилазой, последующего дезаминирования и окисления азотистых оснований (рис. 10-9).

От АМФ и аденозина аминогруппа удаляется гидролитически аденозиндезаминазой с образованием ИМФ или инозина. ИМФ и ГМФ превращаются в соответствующие нуклеозиды: инозин и гуанозин под действием 5 -нуклеотида-зы. Пуриннуклеозидфосфорилаза катализирует расщепление N-гликозидной связи в инозине и гуанозине с образованием рибозо-1-фосфата и азотистых оснований: гуанина и гипоксантина. Гуанин дезаминируется и превращается в ксантин, а гипоксантин окисляется в ксантин с помощью ксантиноксидазы, которая катализирует и дальнейшее окисление ксантина в мочевую кислоту.

Ксантиноксидаза - аэробная оксидоредуктаза, простетическая группа которой включает ион молибдена, железа (Fe3+) и FAD. Подобно другим оксидазам, она окисляет пурины молекулярным кислородом с образованием пероксида водорода. В значительных количествах фермент обнаруживается только в печени и кишечнике.

Мочевая кислота удаляется из организма главным образом с мочой и немного через кишечник с фекалиями. У всех млекопитающих, кроме приматов и человека, имеется фермент уриказа, расщепляющий мочевую кислоту с образованием аллантоина, хорошо растворимого в воде (рис. ).

Амфибии, птицы и рептилии, подобно человеку, лишены уриказы и экскретируют мочевую кислоту и гуанин в качестве конечных продуктов обмена.

Мочевая кислота является слабой кислотой. Содержание недиссоциированной формы и солей (уратов) зависит от рН раствора. При физиологических значениях рН у мочевой кислоты может диссоциировать только один протон из трёх (рК = 5,8), поэтому в биологических жидкостях присутствует как недиссоциированная кислота в комплексе с белками, так и её натриевая соль.

В сыворотке крови в норме содержание мочевой кислоты составляет 0,15-0,47 ммоль/л или 3-7 мг/дл. Ежесуточно из организма выводится от 0,4 до 0,6 г мочевой кислоты и уратов.

Нарушения обмена пуриновых нуклеотидов

Ураты значительно более растворимы, чем мочевая кислота: так, в моче с рН 5,0, когда мочевая кислота не диссоциирована, её растворимость в 10 раз меньше, чем в моче с рН 7,0, при котором основная часть мочевой кислоты представлена солями. Реакция мочи зависит от состава пищи, но, как правило, она слабокислая, поэтому большинство камней в мочевыводящей системе - кристаллы мочевой кислоты.

А. ГИПЕРУРИКЕМИЯ И ПОДАГРА

Когда в плазме крови концентрация мочевой кислоты превышает норму, то возникает гиперурикемия. Вследствие гиперурикемии может развиться подагра - заболевание, при котором кристаллы мочевой кислоты и уратов откладываются в суставных хрящах, синовиальной оболочке, подкожной клетчатке с образованием подагрических узлов, или тофусов. К характерным признакам подагры относят повторяющиеся приступы острого воспаления суставов (чаще всего мелких) - так называемого острого подагрического артрита. Заболевание может прогрессировать в хронический подагрический артрит.

Поскольку лейкоциты фагоцитируют кристаллы уратов, то причиной воспаления является разрушение лизосомальных мембран лейкоцитов кристаллами мочевой кислоты. Освободившиеся лизосомальные ферменты выходят в цитозоль и разрушают клетки, а продукты клеточного катаболизма вызывают воспаление.

Общий фонд сывороточных уратов в норме составляет ~ 1,2 г у мужчин и 0,6 г у женщин. При подагре без образования тофусов (т.е. подагрических узлов, в которых накапливаются ураты натрия и мочевая кислота) количество уратов возрастает до 2-4 г, а у пациентов с тяжёлой формой болезни, сопровождающейся ростом тофусов, может достигать 30 г.

Подагра - распространённое заболевание, в разных странах ею страдают от 0,3 до 1,7% населения. А поскольку сывороточный фонд уратов у мужчин в 2 раза больше, чем у женщин, то они и болеют в 20 раз чаще, чем женщины.

Как правило, подагра генетически детерминирована и носит семейный характер. Она вызвана нарушениями в работе ФРДФ синтетазы или ферментов «запасного» пути: гипоксантин-гуа-нинили аденинфосфорибозилтрансфераз.

К другим характерным проявлениям подагры относят нефропатию, при которой наблюдают образование уратных камней в мочевыводящих путях.

Полиморфные варианты ФРДФ синтетазы

Активность ФРДФ синтетазы, катализирующей образование ФРДФ, строго контролируется пу-риновыми нуклеотидами. Мутации в гене ФРДФ синтетазы привели к появлению полиморфных вариантов фермента, которые характеризуются аномальным ответом на обычные регуляторные факторы: концентрацию рибозо-5-фосфата и пуриннуклеотидов. Как правило, наблюдается суперактивация фермента. Пуриновые нуклеотиды синтезируются со скоростью, почти независимой от нужд клетки. Это вызывает ингибирование запасных «путей спасения», усиление катаболизма избыточного количества нуклеотидов, повышение продукции мочевой кислоты, гиперурикемию и подагру (табл.).

Примерно у 40% больных одной из форм гликогеноза - болезнью Гирке (недостаточностью глюкозо-6-фосфатазы) сопутствующей патологией является подагра. Снижение способности печени секретировать глюкозу в кровь увеличивает использование глюкозо-6-фосфата в пентозофосфатном пути. Образуются большие количества рибозо-5-фосфата, которые могут стимулировать избыточный синтез, а следовательно, и катаболизм пуриновых нуклеотидов.

Подагра - это заболевание суставов, которое обусловлено отложением солей мочевой кислоты (уратов). Подагрой страдают примерно три человека из тысячи. Причем мужчины составляют подавляющее большинство. Заболевание обычно проявляется после 40 лет у мужчин и после менопаузы у женщин. Подагра - метаболическое заболевание с нарушением пуринового обмена и накоплением мочевой кислоты в организме, протекающее с повторными приступами острого артрита, кристаллиндуцированными синовиитами, отложением уратов в тканях.

Подагра чаще развивается в течение пятого десятилетия жизни. Распространенность подагры составляет 0.1%. Мужчины болеют в 20 раз чаще, чем женщины.

Различают первичную и вторичную подагру. Первичная подагра - самостоятельное заболевание, вторичная подагра - проявление других болезней (миелолейкозы, псориаз, ХПН, гемоглобинопатии, врожденные пороки сердца с эритроцитозом) или следствие применения лекарственных средств (рибоксин, цитостатики, салуретики и др.).

При первичной подагре нередко обнаруживаются генетически обусловленные дефекты в энзимах, участвующих в метаболизме пуринов: снижение активности гипоксантин-гуанинфосфорибо-зилтрансферазы и аденинфосфорибозил-пирофосфат-синтетазы и повышенная активность 5-фосфорибозил-1-синтетазы, что ведет к повышению синтеза мочевой кислоты. Активность гипоксантин-гуанинфосфорибозилтрансферазы и 5-фосфорибозил-1-синтетазы контролируется генами, связанными с Х-хромосомой, поэтому их врожденный дефект бывает лишь у мужчин. С генетическим дефектом связана и гипофункция ферментных систем почек, регулирующих экскрецию мочевой кислоты. Развитию подагры способствуют также избыточное питание, однообразная мясная пища, употребление алкогольных напитков (особенно пива, сухих виноградных вин), а также малоподвижный образ жизни. Наиболее частой причиной вторичной подагры являются болезни почек с почечной недостаточностью, болезни крови (полицитемия, лейкозы), сопровождающиеся распадом клеток и гиперурикемией.

Патогенез (механизм развития) подагры

В основе развития болезни лежит нарушение метаболизма мочевой кислоты. Выделяют 3 фазы патогенеза:

- гиперурикемия и накопление уратов в организме;

- отложение уратов в тканях;

- острое подагрическое воспаление.

Гиперурикемия и накопление уратов в организме развиваются вследствие повышенного их биосинтеза и снижения экскреции с мочой. Это ведет к отложению уратов в тканях. Острое подагрическое воспаление развивается вследствие отложения в суставной полости уратовых микрокристаллов, способных активизировать фактор Хагемана, компоненты комплемента, кинины, что приводит к увеличению сосудистой проницаемости, притоку нейтрофилов. Фагоцитоз кристаллов сопровождается высвобождением лизосомальных ферментов, в результате чего развивается воспаление. Кристаллы уратов откладываются также в интерстиции почек и канальцах, что приводит к развитию подагрической нефропатии - второго важнейшего клинического признака подагры.

Гиперурикемия — состояние, проявляющееся повышенной концентрацией мочевой кислоты в крови и как следствие — в моче. Подагра • типовая форма патологии пуринового обмена, • характеризующаяся хроническим повышением содержания в крови мочевой кислоты, • отложением избытка её солей в органах, тканях, суставах, • уратной нефропатией, нефро- и уролитиазом. Этиология подагры Основные причины и условия, способствующие возникновению и развитию подагры, представлены на рисунке. причины подагры Факторы риска подагры • Повышенное образование в организме мочевой кислоты (например, при недостаточности гипоксантин гуанин фосфорибозилтрансферазы, избытке пуринов в пище при употреблении большого количества мяса, молока, икры, рыбы, кофе, какао, шоколада и др.). • Увеличение катаболизма пуриновых нуклеотидов с образованием избытка уратов (например, при применении цитостатиков у пациентов с новообразованиями; массированном апоптозе у пациентов с болезнями иммунной аутоагрессии; распаде АТФ в результате интенсивной мышечной нагрузки). • Торможение выведения мочевой кислоты с мочой (например, при почечной недостаточности, выраженном ацидозе). • Повышенный синтез мочевой кислоты при одновременном снижении выведения её из организма (например, при злоупотреблении алкоголем, развитии шоковых состояний, гликогенозе с недостаточностью глюкозо-6-фос-фатазы). Патогенез подагры. Наиболее важные звенья патогенеза подагры представлены на рисунке.

Описание: Описание: Описание: Описание: причины подагры

• Избыток уратов в плазме крови и межклеточной жидкости активирует системы комплемента (с образованием факторов хемотаксиса, например, С5а и С3а), кининов, гемостаза. • Хемотаксические вещества мобилизуют из циркулирующей крови лейкоциты, в том числе фагоцитирующие. Они накапливаются в местах максимальной концентрации мочевой кислоты, образующей кристаллы: в коже, почках, хрящах, в околосуставных тканях. • Микро- и макрофаги поглощают кристаллы мочевой кислоты (особенно после адгезии на них Ig). Это обусловливает активацию фагоцитов и высвобождение ими: - медиаторов воспаления (включая биогенные амины, Пг, лейкотриены, ферменты); - реактивных форм кислорода, свободных радикалов и перекисей веществ. • Фагоцитирующие клетки высвобождают также провоспалительные цитокины (ИЛ-1, ИЛ-6, ИЛ-8, ФНО-альфа, лейкотриены и др.), потенцирующие воспаление и делающие его хроническим. • Повреждение клеток и неклеточных элементов уратами, медиаторами воспаления, цитотоксическими лейкоцитами сопровождается образованием антигенных структур, что активирует реакции иммунной аугоагрессии и аллергии. • В зоне отложения уратов скапливается большое количество лейкоцитов (полиморфноядерных нейтрофилов, мононуклеарных фагоцитов, лимфоцитов), эпителиоидных и гигантских макрофагоподобных клеток, фиброб-ластов. Постепенно образуются подагрические гранулемы и подагрические «шишки» — tophi urici. • Tophi urici формируются вокруг суставов (чаще — ступней, голеностопных, локтевых, лучезапястных), в почках, коже, хрящах ушных раковин. причины нарушения обмена подагры Проявления подагры • Постоянно повышенная концентрация мочевой кислоты в плазме крови и моче. • Воспаление различных суставов (чаще моноартриты). • Лихорадка. • Сильная боль в зоне накопления уратов (может иметь характер длительных эпизодов: до 2-3 сут). • Повторное появление тофусов. • Признаки почечной недостаточности. • Нефро- и уролитиаз, рецидивирующие пиелонефриты. • Изменения в почках завершаются нефросклерозом, почечной недостаточностью, уремией. Гипоурикемия Гипоурикемия — состояние, характеризующееся снижением концентрации мочевой кислоты в крови ниже нормы. Возможная причина подагры: недостаточность ксантиноксидазы и/или сульфитоксидазы. Проявления подагры • Образование кристаллов и конкрементов в ткани почек, вокруг суставов, в мышцах. • Мышечные судороги и нистагм (обусловлены миозитами, поражением центральных и периферических нейронов, а также нервных стволов).

Симптомы подагры

В развитии подагры различают три периода: преморбидный, интермиттирующий и хроническую подагру. В преморбидном периоде имеется только гиперурикемия, протекающая бессимптомно. В интермиттирующем периоде имеет место чередование острых приступов артрита с бессимптомными межприступными промежутками. Для хронической подагры характерны тофусы, хронический подагрический артрит, из внесуставных проявлений подагры наиболее часто встречается поражение почек (у 50-75 % больных).

Начало заболевания имеет 7 вариантов:

1.Типичный острый приступ (классический) -50- 80 % случаев. Возникает чаще всего среди полного здоровья, внезапно, нередко среди ночи. У части больных возможны продромальные явления в виде слабости, повышенной утомляемости, субфебрилитета, головных болей, артралгии. Провоцируют приступ жирная пища, алкоголь, переохлаждение, травма.

Приступ начинается внезапно, чаще ночью, появляются резчайшие боли в 1 плюснефаланговом суставе (большом пальце стопы), сустав быстро припухает, кожа над ним краснеет, затем становится синевато-багровой, горячей, температура тела повышается до 38-39°, кожа над суставом блестит, напряжена, функция сустава нарушена, больной обездвижен.

Первые приступы подагры, как правило, длятся 3-4-10 дней, затем боли исчезают, кожа становится нормальной, отек исчезает, функция сустава восстанавливается полностью. Следующий приступ наступает через какое-то время (иногда через месяцы, даже годы), но с течением времени светлые промежутки укорачиваются. Во время приступа увеличена СОЭ, уровень сиа-ловых кислот, фибрина, серомукоида, появляется С-реактивный протеин.

В некоторых случаях первым признаком болезни могут быть поражения суставов плюсны, голеностопного, коленного, лучезапястного, реже - мелких суставов кисти.

2. Подострая форма может протекать в виде моноартрита типичной локализации в суставах большого пальца, но с незначительной болью и умеренными экссудативными явлениями. Возможен подострый моно-, олигоартрит крупных и средних суставов у молодых людей.

3. Ревматоидноподобный вариант характеризуется первичным поражением мелких суставов кистей, лучезапястных суставов или моно-, олигоартритом при затяжном течении приступа.

4. Псевдофлегмонозная форма проявляется моноартритом любой локализации с резко выраженными воспалительными явлениями в области сустава и окружающих тканей с высокой температурой тела, ознобом, лейкоцитозом, увеличением СОЭ - т. е. клиника сходна с клинической картиной флегмоны или острого инфекционного артрита.

5. Подагра, протекающая по типу инфекционно-аллергического полиартрита (в 5% случаев), может дебютировать как мигрирующий полиартрит с быстрым обратным развитием воспалительных явлений, что напоминает инфекционно-аллергический полиартрит.

6. Малосимптомная форма. Отмечается лишь небольшая боль, изредка с легкой гиперемией кожи в области пораженного сустава.

7. Периартритическая форма с локализацией процесса в сухожилиях и бурсах (чаще всего в пяточном сухожилии с его уплотнением и утолщением) при интактных суставах.

Со временем у больных развивается хронический подагрический полиартрит, при котором чаще поражаются суставы ног: появляется дефигурация сустава, ограничение подвижности, затем деформируются суставы за счет узелковых отложений, костных разрастаний, появляются подвывихи пальцев, контрактуры, грубый хруст в суставах (коленных, голеностопных), больные утрачивают трудоспособность, передвигаются с трудом.

Постепенно появляется тугоподвижность суставов, их деформация, развиваются атрофии мышц, контрактуры, но анкилозы - крайне редко.

На фоне хронического подагрического артрита продолжают возникать острые приступы подагры, при этом наиболее тяжелой его разновидностью является подагрический статус - непрерывное обострение артрита с хронической воспалительной реакцией окружающих тканей, обусловленной массивной инфильтрацией уратами.

Тофусы (подагрические узлы) - специфичный признак подагры - образуются при высокой гиперурикемии и длительности заболевания свыше 5-6 лет. Тофусы - это узелки, содержащие ураты, окруженные соединительной тканью. Локализуются чаще всего на ушных раковинах, локтях, в бурсах локтевых суставов, стопах, на пальцах кистей, разгибательной поверхности предплечий, бедер, голеней, на лбу, в области хрящевой перегородки носа. Узелки желтоватого цвета, их содержимое при приступах может разжижаться и выделяться через свищи, но инфицируются они редко (ураты обладают бактерицидным эффектом), отделяемое белого цвета.

Почечнокаменная болезнь возникает у 40 % больных (проявляется почечной коликой обычно на фоне суставной подагрической атаки, может осложняться пиелонефритом), подагрическая нефропатия - подагрический интерстициальный нефрит (изостенурия, микрогематурия, протеинурия, цилиндрурия, артериальная гипертензия, в дальнейшем хроническая почечная недостаточность) - у 30 % больных.

Следует иметь в виду, что подагра часто ассоциируется с такими патологическими состояниями, как артериальная гипертония, ожирение, гиперлипидемия, жировая дистрофия печени, атеросклероз, нарушения мозгового кровообращения, алкогольная зависимость. Течение подагры характеризуется разнообразием темпов развития болезни. Возможно относительно доброкачественное течение с редкими приступами, небольшой иперурикемией и урикозурией и длительным сохранением функциональной недостаточности опорно-двигательного аппарата. В других случаях, напротив, с самого начала заболевания наблюдаются частые атаки острого артрита с сильными болями или непрерывные атаки с множественным поражением суставов на протяжении нескольких недель или месяцев (подагрический статус). Рефрактерное к проводимой терапии течение подагры приводит к быстрому развитию функциональной недостаточности суставов и почек. В основе выделения вариантов течения подагры лежат: количество приступов артрита в течение года, число пораженных суставов, выраженность костно-хрящевой деструкции, наличие тофусов, патология почек и ее характер.

Подагра поражает любые суставы: пальцев, кистей, локтей, коленей, ступней. Чаще всего от подагры страдают суставы пальцев ступни.  К факторам риска относятся также артериальная гипертония, сахарный диабет, наследственная предрасположенность, нарушение питания. Отложение уратов возможно под кожей – ушных раковинах, сухожилиях, локтевых и коленных суставах.При этом образуются подагрические узелки – тофусы, которые безвредны.

Описание: Описание: Описание: http://www.medicusamicus.com/data/images/1339-1.jpg

Рис. Отложение уратов под кожей – ушных раковинах и коленных суставах

Описание: Описание: C:\Users\admin\Desktop\Русский\07Биосинтез и катаболизм пуриновых нуклеотидов.files\image009.gifОписание: Описание: C:\Users\admin\Desktop\Русский\07Биосинтез и катаболизм пуриновых нуклеотидов.files\image010.gifОписание: Описание: C:\Users\admin\Desktop\Русский\07Биосинтез и катаболизм пуриновых нуклеотидов.files\image011.gifОписание: Описание: Описание: Описание: Описание: http://www.lvrach.ru/data/078/575/1238/016_1.jpg

Рис. Подагрические тофусы

Подагра относится к «старым» болезням и известна со времен глубокой древности. Термин «подагра» происходит от греческих слов pus, что означает стопа, и agra — захват. Таким образом, уже в названии заболевания подчеркивается одно из кардинальных проявлений подагрического артрита. Подагра рассматривается не только как недуг, при котором патологический процесс локализуется в опорно-двигательном аппарате, но и как системное заболевание, характеризующееся поражением жизненно важных органов, и прежде всего почек. Распространенность подагры в различных регионах варьирует в широких пределах и во многом связана с особенностями питания населения, составляя в среднем 0,1%. В США этот показатель равен 0,84% (возможно, эта цифра завышена).

НЕДОСТАТОЧНОСТЬ ФЕРМЕНТОВ «ЗАПАСНЫХ ПУТЕЙ» СИНТЕЗА ПУРИНОВЫХ НУКЛЕОТИДОВ. СИНДРОМ ЛЕША-НИХАНА

В ряде случаев причиной гиперурикемии, избыточной экскреции пуринов с мочой и подагры являются нарушения в работе ферментов «пути спасения» пуриновых оснований (табл.). Гипоксантин-гуанин фосфорибозилтрансфераза катализирует реакцию превращения гуанина и гипоксантина в соответствующие нуклеотиды (рис.). Обнаружены полиморфные варианты гипоксантин-гуанинфосфорибозилтрансферазы со сниженной ферментативной активностью, что:

•  уменьшает повторное использование пуриновых оснований, и они превращаются в мочевую кислоту;

•  увеличивает синтез пуриновых нуклеотидов de novo из-за слабого использования ФРДФ в реакциях реутилизации и увеличения его концентрации в клетке. Адениловые и гуаниловые нуклеотиды образуются в количествах, превышающих потребности клеток, а это способствует усилению их катаболизма.

Синдром Леша-Нихана - тяжёлая форма гиперурикемии, которая наследуется как рецессивный признак, сцепленный с Х-хромосомой, и проявляется только у мальчиков.

Болезнь вызвана полным отсутствием активности гипоксантин-гуанинфосфорибозилтранс-феразы и сопровождается гиперурикемией с содержанием мочевой кислоты от 9 до 12 мг/дл, что превышает растворимость уратов при нормальном рН плазмы. Экскреция мочевой кислоты у больных с синдромом Леша-Нихана превышает 600 мг/сут и требует для выведения этого количества продукта не менее 2700 мл мочи.

У детей с данной патологией в раннем возрасте появляются тофусы, уратные камни в моче-выводящих путях и серьёзные неврологические отклонения, сопровождающиеся нарушением речи, церебральными параличами, снижением интеллекта, склонностью к нанесению себе увечий (укусы губ, языка, пальцев).

В первые месяцы жизни неврологические расстройства не обнаруживаются, но на пелёнках отмечают розовые и оранжевые пятна, вызванные присутствием в моче кристаллов мочевой кислоты. При отсутствии лечения больные погибают в возрасте до 10 лет из-за нарушения функции почек. Полная потеря активности аденинфосфо-рибозилтрансферазы не столь драматична, как отсутствие гипоксантин-гуанинфосфорибозил-трансферазы, однако и в этом случае нарушение повторного использования аденина вызывает гиперурикемию и почечнокаменную болезнь, при которой наблюдается образование кристаллов 2,8-дигидроксиаденина.

Этиология и патогенез. Синдром Леша—Нихана — редкое Х-сцепленное наследственное заболевание, характеризующееся двусторонним хореатетозом, умственной отсталостью, гиперурикемией. У больных отмечается отсутствие фермента гипоксантингуанинфосфорибозной трансферазы в эритроцитах, фибробластах, базальных ганглиях. Причина поражения ЦНС неизвестна. Характерных морфологических изменений в мозге не обнаружено. Клиника. Болеют только мальчики.

Первые признаки заболевания обнаруживаются сразу после рождения или в течение первых 8 мес жизни. Они заключаются в беспокойном поведении ребенка, повышении мышечного тонуса, повторной рвоте, полнурии, полидипсии и появлении оранжевых кристаллов в моче. В возрасте 6—8 мес появляются непроизвольные атето-идные гиперкинезы. Становится заметным отставание в интеллектуальном развитии. К 2—3 годам или несколько позже проявляется стремление кусать собственные губы и пальцы, но этот симптом не обязателен. Отмечается отставание в росте, развивается торсионный спазм, резко повышается мышечный тонус, имеется тенденция к перекрещиванию выпрямленных ног.

Описание: Описание: Описание: Описание: http://drugline.org/img/ail/246_247_3.jpg

Рис. Больной с синдромом Леш-Нихана

 

Дети обычно становятся легковозбудимыми, агрессивными. С течением времени затрудняется ходьба. Сухожильные рефлексы повышаются. Появляются патологические рефлексы. При лабораторном исследовании обнаруживается повышение уровня мочевой кислоты в моче. Заболевание часто сопровождается образованием песка и камней в мочевых путях. Диагноз. При проведении дифференциального диагноза следует иметь в виду, что среди заболеваний, сопровождающихся умственной отсталостью, гиперурикемия может отмечаться при синдроме Дауна.

 

Биосинтез пиримидиновых нуклеотидов DE NOVO

Фонд пиримидиновых нуклеотидов, подобно пуриновым нуклеотидам, в основном синтезируется из простых предшественников de novo, и только 10-20% от общего количества образуется по «запасным» путям из азотистых оснований или нуклеозидов.

В отличие от синтеза пуринов, где формирование гетероциклического основания осуществляется на остатке рибозо-5-фосфата, пиримидиновое кольцо синтезируется из простых предшественников: глутамина, СО2 и аспарагиновой кислоты и затем связывается с рибозо-5-фосфатом, полученным от ФРДФ.

Процесс протекает в цитозоле клеток. Синтез ключевого пиримидинового нуклеотида - УМФ идёт с участием 3 ферментов, 2 из которых полифункциональны.

Образование дигидрооротата

У млекопитающих ключевой, регуляторной реакцией в синтезе пиримидиновых нуклеотидов является синтез карбамоилфосфата из глута-мина, СО2 и АТФ, в реакции катализируемой карбамоилфосфатсинтетазой II (КФС II), которая протекает в цитозоле клеток (рис. 10-12). В реакции NH2-группа карбамоилфосфата образуется за счёт амидной группы глутамина, что отличает эту реакцию от реакции синтеза карбамоилфосфата в митохондриях в процессе синтеза мочевины из CO2, NH3 и АТФ с участием КФС I.

Карбамоилфосфат, использующийся на образование пиримидиновых нуклеотидов, является продуктом полифункционального фермента, который наряду с активностью КФС II содержит каталитические центры аспартаттранскарбамои-лазы и дигидрооротазы. Этот фермент назвали «КАД-фермент» - по начальным буквам ферментативных активностей, которыми обладают отдельные каталитические домены этого белка. Объединение первых трёх ферментов метаболического пути в единый полифункциональный комплекс позволяет использовать почти весь синтезированный в первой реакции карбамо-илфосфат на взаимодействие с аспартатом и образование карбамоиласпартата, от которого отщепляется вода и образуется циклический продукт - дигидрооротат (рис. 10-13).

Отщепляясь от КАД-фермента, дигидрооротат подвергается дегидрированию NAD-зависимой

дигидрооротатдегидрогеназой и превращается в свободное пиримидиновое основание - оротовую кислоту, или оротат.

Образование УМФ

В цитозоле оротат становится субстратом бифункционального фермента - УМФ-синтазы, которая обнаруживает оротатфосфорибо-зилтранс-феразную и ОМФ-декарбоксилазную активности. Первоначально фосфорибозильный остаток от ФРДФ переносится на оротат и образуется нуклеотид - оротидин-5 -монофосфат (ОМФ), декарбоксилирование которого даёт уридин-5 -монофосфат (УМФ).

Таким образом, шесть последовательных реакций синтеза пиримидиновых нуклеотидов осуществляются тремя ферментами, которые кодируются в геноме человека тремя различными структурными генами.

Биосинтез УДФ, УТФ и цитидиловых нуклеотидов

УМФ под действием специфических нуклео-зидмонофосфат (НМФ) и нуклеозиддифосфат (НДФ) киназ превращается в УДФ и УТФ в результате переноса γ-фосфатного остатка АТФ на соответствующий субстрат.

НМФ-киназа катализирует следующую реакцию:

умф + атф → удф + адф, а НДФ-киназа:

удф + атф → утф + адф.

ЦТФ синтетаза катализирует амидирование УТФ (рис.), осуществляя АТФ-зависимое замещение кетогруппы урацила на амидную группу глутамина с образованием цитидин-5 -трифосфата (ЦТФ).

Описание: Описание: Описание: Описание: http://vmede.org/sait/content/Biohimija_severin_2009/10_files/mb4_019.jpeg

Рис. Синтез карбамоилфосфата.

 

Б. «ЗАПАСНЫЕ» ПУТИ СИНТЕЗА ПИРИМИДИНОВЫХ НУКЛЕОТИДОВ

Использование пиримидиновьгх оснований и нуклеозидов в реакциях реутилизации препятствует катаболизму этих соединений до конечных продуктов с расщеплением пиримидинового кольца. В ресинтезе пиримидинов участвуют некоторые ферменты катаболизма нуклеотидов. Так, уридинфосфорилаза в обратимой реакции может рибозилировать урацил с образованием уридина.

Урацил + Рибозо-1-фосфат → Уридин + Н3РО4.

Превращение нуклеозидов в нуклеотиды катализирует уридинцитидинкиназа.

Часть ЦМФ может превращаться в УМФ под действием цитидиндезаминазы и пополнять запасы уридиловых нуклеотидов.

ЦМФ + H2O → УМФ + NH3.

Регуляция синтеза пиримидиновых нуклеотидов

Регуляторным ферментом в синтезе пири-мидиновых нуклеотидов является полифункциональный КАД-фермент. УМФ и УТФ ал-лостерически ингибируют, а ФРДФ активирует его карбамоилсинтетазную активность, тогда как активность аспартаттранскарбамоилазного домена ингибирует ЦТФ, но активирует АТФ (рис.).

Описание: Описание: Описание: Описание: http://vmede.org/sait/content/Biohimija_severin_2009/10_files/mb4.jpeg

Рис. Регуляция синтеза пиримидиновых нуклеотидов.

КАД-фермент катализирует реакции 1, 2, 3; дигидрооротатдегидрогеназа - реакцию 4; УМФ син-тетаза - реакции 5 и 6; НМФ киназа - реакцию 7; НДФ киназа - реакцию 8; ЦТФ синтетаза - реацию 9.

 

Этот способ регуляции позволяет предотвратить избыточный синтез не только УМФ, но и всех других пиримидиновых нуклеотидов и обеспечить сбалансированное образование всех четырёх основных пуриновых и пиримидиновых нуклеотидов, необходимых для синтеза РНК.

 

НАРУШЕНИЯ ОБМЕНА ПИРИМИДИНОВЫХ НУКЛЕОТИДОВ

Описано несколько нарушений, связанных со снижением активности ферментов обмена пиримидиновых нуклеотидов. Одно из них - оро-тацидурия - вызвано дефектом в работе второго бифункционального фермента синтеза нуклеоти-дов de novo - УМФ-синтазы, два других обнаружены в процессе катаболизма пиримидинов.

ОРОТАЦИДУРИЯ

Это единственное нарушение синтеза пиримидинов de novo. Оно вызвано снижением активности УМФ-синтазы, которая катализирует образование и декарбоксилирование ОМФ. Поскольку в эмбриогенезе от образования пиримидинов de novo зависит обеспечение синтеза ДНК субстратами, то жизнь плода невозможна при полном отсутствии активности этого фермента. Действительно, у всех пациентов с оротацидурией отмечают заметную, хотя и очень низкую активность УМФ-синтазы. Установлено, что содержание оротовой кислоты в моче пациентов (1 г/сут и более) значительно превосходит количество оро-тата, которое ежедневно синтезируется в норме (около 600 мг/сут). Снижение синтеза пирими-диновых нуклеотидов, наблюдающееся при этой патологии, нарушает регуляцию КАД-фермента по механизму ретроингибирования, из-за чего возникает гиперпродукция оротата.

Клинически наиболее характерное следствие оротацидурии - мегалобластная анемия, вызванная неспособностью организма обеспечить нормальную скорость деления клеток эритроцитарного ряда. Её диагностируют у детей на том основании, что она не поддаётся лечению препаратами фолиевой кислоты.

Недостаточность синтеза пиримидиновых нуклеотидов сказывается на интеллектуальном развитии, двигательной способности и сопровождается нарушениями работы сердца и ЖКТ. Нарушается формирование иммунной системы, и наблюдается повышенная чувствительность к различным инфекциям.

Гиперэкскреция оротовой кислоты сопровождается нарушениями со стороны мочевыводящей системы и образованием камней. При отсутствии лечения больные обычно погибают в первые годы жизни. При этом оротовая кислота не оказывает токсического эффекта. Многочисленные нарушения в работе разных систем организма вызваны «пиримидиновым голодом». Для лечения этой болезни применяют уридин (от 0,5 до 1 г/сут), который по «запасному» пути превращается в УМФ.

Уридин + АТФ → УМФ + АДФ.

Нагрузка уридином устраняет «пиримидиновый голод», а поскольку из УМФ могут синтезироваться все остальные нуклеотиды пиримиди-нового ряда, то снижается выделение оротовой кислоты из-за восстановления механизма ретроингибирования КАД-фермента. Для больных оротацидурией лечение уридином продолжается в течение всей жизни, и этот нуклеозид становится для них незаменимым пищевым фактором.

Кроме генетически обусловленных причин, оротацидурия может наблюдаться:

• при гипераммониемии, вызванной дефектом любого из ферментов орнитинового цикла, за исключением карбамоилфосфатсинтетазы I. В этом случае карбамоилфосфат, синтезированный в митохондриях, выходит в цитозоль клеток и начинает использоваться на образование пиримидиновых нуклеотидов. Концентрация всех метаболитов, в том числе и оротовой кислоты, повышается. Наиболее значительная экскреция оротата отмечается при недостаточности орнитин-карбамоилтрансферазы (второго фермента орнитинового цикла);

в процессе лечения подагры аллопуринолом, который превращается в оксипури-нолмононуклеотид и становится сильным ингибитором УМФ-синтазы. Это приводит к накоплению оротовой кислоты в тканях и крови.

 

КАТАБОЛИЗМ ПИРИМИДИНОВЫХ НУКЛЕОТИДОВ

Уже говорилось о том, что цитидиловые нуклеотиды могут гидролитически терять аминогруппу и превращаться в УМФ. Когда от УМФ при участии нуклеотидазы (или фосфатазы) и уридинфосфорилазы отщепляются неорганический фосфат и рибоза, то остаётся азотистое основание - урацил. Аналогично расщепляются дезоксирибонуклеотиды, и из dЦМФ образуется урацил, а из dТМФ - тимин (рис.).

Пиримидиновые основания при участии ди-гидропиримидиндегидрогеназы присоединяют 2 атома водорода по двойной связи кольца с образованием дигидроурацила или дигидротимина. Оба гетероцикла могут взаимодействовать с водой в реакции, катализируемой дигидро-пиримидинциклогидролазой, и дигидроурацил превращается в β-уреидопропионовую кислоту, а дигидротимин - в β-уреидоизомасляную кислоту. Оба β-уреидопроизводных под действием общего для них фермента уреидопропионазы расщепляются с образованием СО2, NH4+ и β-аланина или β-аминоизомасляной кислоты соответственно.

β-Аланин обнаруживают в плазме крови и многих тканях. Он используется в мышцах на образование дипептидов: карнозина и анзерина. Под действием бактериальной микрофлоры кишечника β-аланин включается в пантотеновую кислоту, которая всасывается и используется на образование KoA.

Часть β-аланина и β-аминоизобутирата трансаминируется с α-кетоглутаратом и даёт малонил полуальдегид или метилмалонил полуальдегид соответственно, которые превращаются в ма-лонил-КоА и сукцинил-КоА и используются в соответствующих метаболических путях, либо окисляются до СО2 и Н2О. Частично β-амино-изобутират экскретируется с мочой.

 

НАРУШЕНИЯ КАТАБОЛИЗМА ПИРИМИДИНОВ

Известны нарушения в работе 2 ферментов этого метаболического пути.

При недостаточности пиримидин-5'-нуклеотидазы нарушаются отщепление неорганического фосфата от пиримидиновых мононуклеотидов и образование нуклеозидов.

Неактивная изоформа пиримидин-5'-нуклеотидазы обнаружена в эритроцитах. В результате наблюдается накопление пиримидиновых НТФ, которые ингибируют пентозофосфатный путь превращения глюкозы и тем самым создают предпосылки к гемолизу эритроцитов.

Дигидропиримидиндегидрогеназа - скорость-лимитирующий фермент катаболизма пиримидинов. Нарушение работы этого фермента сопровождается отклонениями в функционировании нервной системы и диагностируется на основании повышения уровня свободных пиримидинов: урацила и тимина в плазме крови.

Биосинтез дезоксирибонуклеотидов. Предшественником цитидиловых нуклеотидов является УТФ, который превращается в ЦТФ:

Описание: Описание: Описание: Описание: Описание: Описание: Описание: Описание: Описание: http://www.xumuk.ru/biologhim/bio/img1106.jpg

У прокариот в этой реакции используется преимущественно свободный аммиак, в то время как в клетках животных ЦТФ-синтетаза катализирует включение амидной группы глутамина в 4-е положение пиримидинового кольца УТФ. Следует отметить, что образующийся ЦТФ служит отрицательным эффектором регуляторного аллостерического фермента аспартаткарбамоилтрансферазы, ингибируя по типу обратной связи начальную стадию биосинтеза пиридиновых нуклеотидов. АТФ предотвращает это ингибирование.

Биосинтез тимидиловых нуклеотидов. Тимидиловые нуклеотиды входят в состав ДНК, содержащей дезоксирибозу. Поэтому сначала рассмотрим механизмы синтеза дезоксирибонуклеотидов. При помощи метода меченых атомов было показано, что этот синтез начинается не со свободной дезоксирибозы, а путем прямого восстановления рибонуклеотидов у 2'-го атома углерода. При инкубации меченых предшественников (рибонуклео-тидов) в бесклеточной системе бактерий метку обнаружили в составе дезоксирибонуклеотидов. По данным П. Рейхарда, у Е. coli все 4 рибо-нуклеозиддифосфата восстанавливаются в соответствующие дезоксиана-логи: dАДФ, dГДФ, dЦДФ, dУДФ – при участии сложной ферментной системы, состоящей по меньшей мере из четырех разных ферментов.

Химический смысл превращения рибонуклеотидов в дезоксирибо-нуклеотиды сводится к элементарному акту – восстановлению рибозы в 2-дезоксирибозу, требующему наличия двух атомов водорода. Непосредственным источником последних оказался восстановленный термостабильный белок тиоредоксин, содержащий две свободные SH-группы на 108 аминокислотных остатков. Тиоредоксин легко окисляется, превращаясь в дисульфидную S-S-форму. Для его восстановления в системе имеется специфический ФАД-содержащий фермент тиоредоксинредуктаза (мол. масса 68000), требующая наличия восстановленного НАДФН. Обозначив условно рибонуклеозиддифосфат РДФ, образование дезоксирибонуклео-тидов можно представить следующим образом:

Описание: Описание: Описание: Описание: Описание: Описание: Описание: Описание: Описание: Описание: http://www.xumuk.ru/biologhim/bio/img1108.jpg

Обе стадии могут быть представлены в виде схемы:

Описание: Описание: Описание: Описание: Описание: Описание: Описание: Описание: Описание: Описание: Описание: Описание: Описание: http://www.xumuk.ru/biologhim/bio/img1110.jpg

Для синтеза тимидиловых нуклеотидов, помимо дезоксирибозы, требуется также метилированное производное урацила – тимин. Оказалось, что в клетках имеется особый фермент тимидилатсинтаза, катализирующая метилирование не свободного урацила, а dУМФ; реакция протекает по уравнению:

Описание: Описание: Описание: Описание: Описание: Описание: Описание: Описание: Описание: Описание: Описание: Описание: Описание: http://www.xumuk.ru/biologhim/bio/img1112.jpg

Донором метильной группы в тимидилатсинтазной реакции является N5,N10-метилен-ТГФК, которая одновременно отдает и водородный протон, поэтому одним из конечных продуктов реакции является не тетра-гидро-, а дигидрофолиевая кислота (ДГФК). Последняя вновь восстанавливается до ТГФК под действием НАДФН-зависимой дигидрофолатредуктазы. Из образовавшегося ТМФ путем фосфотрансферазных реакций образуются dТДФ и dTТФ.

Регенерация N5,N10–СН2–ТГФК, собственно ее биосинтез, представляет определенный интерес. Оказалось, что этот синтез требует участия аминокислоты серина (донатор метильной группы) и пиридоксальфосфат-содержащего фермента сериноксиметилтрансферазы в соответствии с уравнением:

Описание: Описание: Описание: Описание: Описание: Описание: Описание: Описание: http://www.xumuk.ru/biologhim/bio/img1114.jpg

Синтез всех остальных дезоксирибонуклеозид-5'-трифосфатов, непосредственно участвующих в синтезе ДНК, также осуществляется путем фосфорилирования дезоксирибонуклеозид-5'-дифосфатов в присутствии АТФ:

АТФ + dАДФ –> АДФ + dATФ; АТФ + dЦДФ –> АДФ + dЦТФ;

АТФ + dГДФ –> АДФ + dГТФ; АТФ + dТДФ –> АДФ + dТТФ.

Далее на двух схемах суммированы данные о взаимопревращениях пуриновых и пиримидиновых нуклеотидов, а также о связи их с синтезом нуклеиновых кислот. Как видно из схем, в образовании пуриновых и пиримидиновых нуклеотидов специфическое участие принимает ФРПФ, являющийся донором фосфорибозильного остатка в биосинтезе как оро-тидин-5'-фосфата, так и ИМФ; последние считаются ключевыми субстратами в синтезе нуклеиновых кислот в клетках.

 

МОЛЕКУЛЯРНЫЕ МЕХАНИЗМЫ РЕПЛИКАЦИИ ДНК. ТРАНСКРИПЦИЯ - БИОСИНТЕЗ РНК. БИОСИНТЕЗ БЕЛКА В РИБОСОМАХ. ЭТАПЫ И МЕХАНИЗМ ТРАНСЛЯЦИИ, РЕГУЛЯЦИЯ ТРАНСЛЯЦИИ. АНТИБИОТИКИ - ИНГИБИТОРЫ ТРАНСКРИПЦИИ И ТРАНСЛЯЦИИ

 

СТРУКТУРА НУКЛЕИНОВЫХ КИСЛОТ

Нуклеиновые кислоты составляют существенную небелковую часть сложного класса органических веществ, получивших название нуклеопротеинов; последние являются основой наследственного аппарата клетки хромосом. Белковые компоненты нуклеопротеинов подвергаются многообразным превращениям, аналогичным метаболизму белков и продуктов их распада – аминокислот. О нуклеиновых кислотах, их структуре и функциях в живых организмах в последнее время накоплен огромный фактический материал, подробно рассмотренный в ряде специальных руководств и монографий. Помимо уникальной роли нуклеиновых кислот в хранении и реализации наследственной информации, промежуточные продукты их обмена, в частности моно-, ди- и трифосфатнуклеозиды, выполняют важные регуляторные функции, контролируя биоэнергетику клетки и скорость метаболических процессов. В то же время нуклеиновые кислоты не являются незаменимыми пищевыми факторами и не играют существенной роли в качестве энергетического материала. Далее детально рассматриваются (помимо краткого изложения вопросов переваривания) проблемы метаболизма нуклеиновых кислот и их производных, в частности пути биосинтеза и распада пуриновых и пиримидиновых нуклеотидов, современные представления о биогенезе ДНК и РНК и их роли в синтезе белка.

Нуклеиновые кислоты представляют линейные полимеры нуклеозидмонофосфатов, то есть полинуклеотиды. Нуклеотиды построены из трех компонентов: пиримидинового или пуринового основания, пентозы и фосфорной кислоты. Нуклеотиды связаны между собой в цепь фосфодиэфирной связью. Она образуется за счет этерификации ОН — группы С—З- пентозы одного нуклеотида и ОН — группы фосфатного остатка другого нуклеотида. В результате один из концов полинуклеотидной цепи заканчивается свободным фосфатом (Р—конец или5-—конец). На другом конце цепи имеется неэтерифицированная ОН — группа у С—З- пентозы (З- — конец).

Переваривание нуклеопротеинов и всасывание продуктов их распада осуществляются в пищеварительном тракте. Под влиянием ферментов желудка, частично соляной кислоты, нуклеопротеины пищи распадаются на полипептиды и нуклеиновые кислоты; первые в кишечнике подвергаются гидролитическому расщеплению до свободных аминокислот. Распад нуклеиновых кислот происходит в тонкой кишке в основном гидролитическим путем под действием ДНК- и РНКазы панкреатического сока. Продуктами реакции при действии РНКазы являются пуриновые и пи-римидиновые мононуклеотиды, смесь ди- и тринуклеотидов и резистентные к действию РНКазы олигонуклеотиды. В результате действия ДНКазы образуются в основном динуклеотиды, олигонуклеотиды и небольшое количество мононуклеотидов. Полный гидролиз нуклеиновых кислот до стадии мононуклеотидов осуществляется, очевидно, другими, менее изученными ферментами (фосфодиэстеразами) слизистой оболочки кишечника. В отношении дальнейшей судьбы мононуклеотидов существует два предположения. Считают, что мононуклеотиды в кишечнике под действием неспецифических фосфатаз (кислой и щелочной), которые гидролизируют фосфоэфирную связь мононуклеотида («нуклеотидазное» действие), расщепляются с образованием нуклеозидов и фосфорной кислоты и в таком виде всасываются. Согласно второму предположению, мононуклеотиды всасываются, а распад их происходит в клетках слизистой оболочки кишечника. Имеются также доказательства существования в стенке кишечника нуклеотидаз, катализирующих гидролитический распад мононуклеотидов. Дальнейший распад образовавшихся нуклеозидов осуществляется внутри клеток слизистой оболочки преимущественно фосфоролитическим, а не гидролитическим путем. Всасываются преимущественно нуклеозиды, и в таком виде часть азотистых оснований может быть использована для синтеза нуклеиновых кислот организма. Если происходит дальнейший распад нуклеозидов до свободных пуриновых и пиримидиновых оснований, то гуанин не используется для синтетических целей. Другие основания, как показывают опыты с меченными по азоту аденином и урацилом, в тканях могут включаться в состав нуклеиновых кислот. Однако экспериментальные данные свидетельствуют, что биосинтез азотистых оснований, входящих в состав нуклеиновых кислот органов и тканей, протекает преимущественно, если не целиком, de novo из низкомолекулярных азотистых и безазотистых предшественников. Таким образом, синтез нуклеиновых кислот, мономерными единицами которых являются мононуклеотиды, будет определяться скоростью синтеза пуриновых и пиримидиновых нуклеотидов; синтез последних в свою очередь зависит от наличия всех составляющих из трех компонентов. Источником рибозы и дезоксирибозы служат продукты превращения глюкозы в пентозофосфатном цикле. Пока не получены доказательства существенной роли пищевых пентоз в синтезе нуклеиновых кислот. Фосфорная кислота также не является лимитирующим фактором, поскольку она поступает в достаточном количестве с пищей. Следовательно, биосинтез нуклеиновых кислот начинается с синтеза азотистых оснований (точнее, мономерных молекул – мононуклеотидов).

Денатурация и ренатурация ДНК

Вторичная структура ДНК стабилизируется лишь слабыми водородными и гидрофобными связями, следовательно, ДНК способна к денатурации (плавлению) при повышении температуры до 80—90о и ренатурации при последующем охлаждении.

Описание: Описание: C:\Users\admin\Desktop\Русский\07Биосинтез и катаболизм пуриновых нуклеотидов.files\image021.jpg

Денатурация и ренатурация ДНК

При денатурации двухспиральная молекула ДНК разделяется на отдельные цепи. Температура, при которой 50% ДНК денатурировано, называется температурой плавления и зависит от качественного состава ДНК. Так как пары Г—Ц стабилизированы тремя водородными связями, а пары А—Т только двумя, то чем выше доля Г—Ц пар, тем стабильнее молекула. При денатурации ДНК поглощение света при длине волны 260 нм повышается (гиперхромный эффект), что позволяет легко контролировать состояние вторичной структуры ДНК.

 

Структура ДНК

Описание: Описание: C:\Users\admin\Desktop\Русский\07Биосинтез и катаболизм пуриновых нуклеотидов.files\image022.jpg

Строение ДНК: А — фрагмент нити ДНК, образованной чередующимися остатками дезоксирибозы и фосфорной кислоты. К первому углеродному атому дезоксирибозы присоединено азотистое основание: 1 — цитозин; 2 — гуанин; Б — двойная спираль ДНК: Д — дезоксирибоза; Ф — фосфат; А — аденин; Т — тимин; Г — гуанин; Ц — цитозин

 

Если раствор денатурированной ДНК медленно охлаждать, то вновь возникают слабые связи между комплементарными цепями и может получиться спиральная структура, идентичная исходной (нативной). На способности ДНК к денатурации и ренатурации основан метод молекулярной гибридизации, который применяют для изучения строения нуклеиновых кислот. Препараты ДНК, выделенные из особей, принадлежащих к разным видам, образуют несовершенные гибриды. Спиральная структура получается не по всей длине молекулы. В неспирализированных участках полинуклеотидные цепи не комплементарны друг другу. Следовательно, ДНК особей неидентична.

Биосинтез нуклеиновых кислот

  Проблема биосинтеза нуклеиновых кислот является предметом пристального внимания многих исследователей и целых научных коллективов. Следует прежде всего отметить исключительную трудность решения этой важнейшей проблемы, связанную с неполными представлениями о природе белковых факторов и механизмах регуляции синтеза нуклеиновых кислот. До сих пор не раскрыты в деталях молекулярные механизмы передачи генетической информации, закодированной в нуклеотидной последовательности ДНК. Различают три основных этапа реализации генетической информации.

Описание: Описание: C:\Users\admin\Desktop\Русский\07Биосинтез и катаболизм пуриновых нуклеотидов.files\image023.jpg

На первом этапе – этапе репликации происходит образование дочерних молекул ДНК, первичная структура которых идентична родительской ДНК (копирование ДНК). Репликация ДНК является ключевой функцией делящейся клетки и частью таких биологических процессов, как рекомбинация, транспозиция и репарация.

Описание: Описание: C:\Users\admin\Desktop\Русский\07Биосинтез и катаболизм пуриновых нуклеотидов.files\image024.jpg

http://www.youtube.com/watch?v=teV62zrm2P0

http://www.youtube.com/watch?v=-mtLXpgjHL0&feature=related

На втором этапе, названном транскрипцией, генетическая информация, записанная в первичной структуре ДНК, переписывается в нуклеотидную последовательность РНК (синтез молекулы РНК на матрице ДНК).

Описание: Описание: C:\Users\admin\Desktop\Русский\07Биосинтез и катаболизм пуриновых нуклеотидов.files\image025.jpg

Специальный фермент полимераза подбирает по принципу комплементарности нуклеотиды и соединяет их в единую цепочку. Если в нити ДНК стоит Тимин, то полимераза включает в цепь и-РНК Аденин, если стоит Гуанин - включает Цитозин, если Аденин - то включает Урацил (в РНК нет Тимина). По длине каждая из молекул и-РНК короче ДНК в сотни раз, т.к. она переписывает только некоторые участки цепи ( гены), необходимые для выполнения одной функции.

 

http://www.youtube.com/watch?v=ztPkv7wc3yU

На третьем этапе – этапе трансляции генетическая информация, содержащаяся уже в нуклеотидной последовательности молекулы РНК, переводится в аминокислотную последовательность белка. Далее представлены основные итоги исследований и наши представления о биосинтезе полимерных молекул ДНК, РНК и белка, полученные к середине 1996 г.

Описание: Описание: C:\Users\admin\Desktop\Русский\07Биосинтез и катаболизм пуриновых нуклеотидов.files\image026.jpg

Инициация. 1. Узнавание стартового кодона (AUG), сопровождается присоединением тРНК аминоацилированной метионином (М) и сборкой рибосомы из большой и малой субъединиц.

Элонгация. 2. Узнавание текущего кодона соответствующей ему аминоацил-тРНК (комплементарное взаимодействие кодона мРНК и антикодона тРНК увеличено). 3. Присоединение аминокислоты, принесённой тРНК, к концу растущей полипептидной цепи. 4. Продвижение рибосомы вдоль матрицы, сопровождающееся высвобождением молекулы тРНК. 5. Аминоацилирование высвободившейся молекулы тРНК соответствующей ей аминоацил-тРНК-синтетазой. 6. Присоединение следующей молекулы аминоацил-тРНК, аналогично стадии (2). 7. Движение рибосомы по молекуле мРНК до стоп-кодона (в данном случае UAG).
 Терминация. Узнавание рибосомой стоп-кодона сопровождается (8) отсоединением новосинтезированного белка и в некоторых случаях (9) диссоциацией рибосомы
.

http://www.youtube.com/watch?v=5bLEDd-PSTQ

http://www.youtube.com/watch?v=-zb6r1MMTkc&feature=related

Биосинтез ДНК

 Прежде чем изложить современные представления о механизме биосинтеза ДНК, следует представить сведения о синтезе этого соединения в бесклеточной системе, которыми располагает биохимия. Известно, что для любого синтеза полимерной органической молекулы, осуществляемого in vitro или in vivo, требуется энергия. Источником энергии в реакциях полимеризации мононуклеотидов является энергия, освобождаемая всеми четырьмя типами дезоксирибонуклеозидтрифосфатов, участвующих в синтезе ДНК. Образующийся пирофосфат под действием пирофосфатазы также расщепляется на две молекулы ортофосфата, давая дополнительную энергию для биосинтеза ДНК.

Помимо энергии, биогенез ДНК требует наличия специфических ферментов, катализирующих отдельные этапы синтеза, и множества белковых факторов, абсолютно необходимых для регулирования процесса репликации и проявления каталитической активности ферментов.

http://www.youtube.com/watch?v=teV62zrm2P0

Ферментные системы синтеза ДНК у про- и эукариот до конца не выяснены. По имеющимся данным, в репликации ДНК, включающей узнавание точки начала процесса, расплетение родительских цепей ДНК в репликационной вилке, инициацию биосинтеза дочерних цепей и дальнейшую их элонгацию и, наконец, окончание (терминация) процесса, участвует более 40 ферментов и белковых факторов, объединенных в единую ДНК-репликазную систему, называемую реплисомой.

По цепочке ДНК, например, "ездит" фермент ДНК-полимераза, копирующий молекулы ДНК. Ученые пытаются искусственно создавать подобные структуры, однако до сих пор ни одна из них не смогла сравниться с естественным аналогами. Авторы исследования утверждают, что по многим характеристикам их "молекулярная машина" превосходит остальные. Однако новая разработка может запутываться при ходьбе. Сейчас создатели работают над преодолением этой трудности.

http://www.youtube.com/watch?v=qn-JW-M89fo&feature=related

После открытия в 1958 г. А. Корнбергом у Е. coli фермента, катализирующего биосинтез ДНК и названного ДНК-полимеразой I, в течение почти 10 лет считалось, что этот фермент является единственной по-лимеразой, принимающей участие в репликации ДНК in vitro. Однако позже был открыт мутант Е. coli, лишенный ДНК-полимеразы I, но способный синтезировать ДНК с нормальной скоростью. Оказалось, что для репликации ДНК Е. coli необходимо участие нескольких ферментов. ДНК-полимераза I не наделена способностью инициировать синтез цепей ДНК de novo. Одним из хорошо изученных ферментов, участвующих в стадии инициации репликации ДНК, является специфическая клеточная РНК-полимераза, названная праймазой, которая катализирует синтез короткого олигорибонуклеотида (от 10 до 60 нуклеотидов), т.е. праймера, с которого затем начинается синтез ДНК.

Описание: Описание: C:\Users\admin\Desktop\Русский\07Биосинтез и катаболизм пуриновых нуклеотидов.files\image027.jpg

РНК-полимераза осуществляет синтез тРНК

     Праймазы различаются как по структуре, так и по специфичности действия. Получены новые данные о существенной роли праймасомы в каталитическом действии фермента. Праймасома представлена ансамблем из 7 различных субъединиц, включающих около 20 полипептидов общей мол. массой 70000. При помощи белка n' праймасома подвергается быстрому перемещению к отстающей цепи ДНК за счет энергии, генерируемой АТФазной активностью белка n'. В состав праймасомы входит также комплекс белков dna В и dna С, который вблизи репликационной вилки периодически участвует в формировании специфической вторичной структуры ДНК, подходящей для узнавания праймазой.

Основным ферментом, катализирующим биосинтез новообразованной ДНК (точнее, стадию элонгации репликации ДНК), является ДНК-полимераза III, представляющая собой мультимерный комплекс собственно ДНК-полимеразы (мол. масса около 900000) и ряда других белков. ДНК-полимераза III из Е. coli состоит минимум из 10 субъединиц. Одна из них – β-субъединица получена в кристаллическом виде, и выяснена ее третичная структура. Имеются доказательства, что в димерной форме ДНК-полимераза III катализирует сопряженный синтез ведущей (лидирующей) и отстающей цепей ДНК при репликации (см. далее). Более точно выяснена также роль ДНК-полимеразы I: она катализирует отщепление затравочного олигорибонуклеотидного праймера и заполнение образующихся после этого пробелов (ниш) дезоксирибонуклеотидами. Известно, что ДНК-полимеразы II из Е. coli (мол. масса 88000) выполняет «ремонтные» функции, исправляя повреждения цепей ДНК. Укажем также, что ДНК-полимераза I в качестве матрицы использует одноцепочечные участки, в то время как ДНК-полимераза III – двухцепочечные ДНК, в которых имеются короткие одноцепочечные последовательности.

Важную функцию соединения двух цепей ДНК или замыкания двух концов одной цепи ДНК в процессе репликации либо репарации ДНК выполняет особый ферментДНК - лигаза, катализирующая за счет энергии АТФ образование фосфодиэфирной связи между 3'-ОН-группой де-зоксирибозы одной цепи и 5'-фосфатной группой другой цепи ДНК. Функцию раскручивания (расплетения) двойной спирали ДНК в репли-кационной вилке, происходящего за счет энергии гидролиза АТФ

Выполняет специфический rep-белок, названный хеликазой (мол. масса 300000). Образовавшиеся на определенное время одноцепочечные участки ДНК служат в качестве матрицы при репликации и стабилизируются при помощи особых белков, связывающихся с одноцепочечной ДНК (ДНК-связывающие белки) и препятствующих обратному комплементарному взаимодействию цепей ДНК (мол. масса 75600). В связи с этим их иногда называют дестабилизирующими двойную спираль белками. Имеются, кроме того, особые ферменты топоизомеразыпрокариот одна из них названа ДНК-гиразой), которые играют особую роль в сверхспирализации, обеспечивая как репликацию, так и транскрипцию ДНК. Эти ферменты наделены способностью не только создавать супервитки, но и уничтожать суперспирализацию путем сшивания образующихся разрывов или разрезания ДНК. Наконец, открыты специальные ферменты , «редактирующие» ДНК, т.е. осуществляющие вырезание и удаление ошибочно включенных нуклеотидов или репарирующие повреждения ДНК, вызванные физическими или химическими факторами (рентгеновское излучение, УФ-лучи, химический мутагенез и др.). Из клеток животных выделено несколько ДНК-полимераз, и в разных лабораториях они получили различные наименования. К настоящему времени у эукариот, как и у бактерий, открыто несколько ДНК-полимераз. В репликации ДНК эукариот участвуют два главных типа полимераз – α и δ. Показано, что ДНК-полимераза α состоит из 4 субъединиц и является идентичной по структуре и свойствам во всех клетках млекопитающих, причем одна из субъединиц оказалась наделенной праймазной активностью. Самая крупная субъединица ДНК-полимеразы а (мол. масса 180000) катализирует реакцию полимеризации, преимущественно синтез отстающей цепи ДНК, являясь составной частью праймасомы. ДНК-полимераза δ состоит из 2 субъединиц и преимущественно катализирует синтез ведущей цепи ДНК. Открыта также ДНК-полимераза ε, которая в ряде случаев заменяет δ-фермент, в частности при репарации ДНК (исправление нарушений ДНК, вызванных ошибками репликации или повреждающими агентами). Следует отметить, что в эукариотических клетках открыты два белковых фактора репликации, обозначаемых RFA и RFC. Фактор репликации А выполняет функцию белка – связывание одноцепочечной ДНК (наподобие белковых факторов связывания разъединенных цепей ДНК при репликации у Е. coli), фактор С – функцию стабилизатора всего репликационного комплекса. В генетической инженерии с целью получения белков в достаточных количествах и с заданными свойствами (например, для генотерапии наследственных и соматических болезней) широкое применение получили эндо-нуклеазы рестриктазы, катализирующие расщепление молекулы двух-цепочечной ДНК по специфическим нуклеотидным последовательностям внутри цепи. Рестриктазы узнают определенные 4–7-членные последовательности, вызывая, таким образом, разрывы в определенных сайтах цепи ДНК. При этом образуются не случайные последовательности, а фрагменты ДНК строго определенной структуры с липкими концами (рекомбинантные ДНК), используемые далее для конструирования гибридных молекул и получения генно-инженерной, биотехнологической продукции (например, инсулина, гормона роста, интерферона, вакцин против вируса гепатита В, СПИДа и др.).

Описание: Описание: C:\Users\admin\Desktop\Русский\07Биосинтез и катаболизм пуриновых нуклеотидов.files\image028.jpg

Реализация генетической информации во всех живых клетках осуществляется в два этапа: транскрипцию и трансляцию.

 

ГЕНЕТИЧЕСКИЙ КОД

Генетическая информация, содержащаяся в ДНК и в иРНК, заключена в последовательности расположения нуклеотидов в молекулах. Каким же образом иРНК кодирует (шифрует) первичную структуру белков, т. е. порядок расположения аминокислот в них? Суть кода заключается в том, что последовательность расположения нуклеотидов в иРНК определяет последовательность расположения аминокислот в белках. Этот код называют генетическим, его расшифровка - одно из великих достижений науки. Носителем генетической информации является ДНК, но так как непосредственное участие в синтезе белка принимает иРНК - копия одной из нитей ДНК, то генетический код записан на «языке» РНК.  Код триплетен. В состав РНК входят 4 нуклеотида: А, Г, Ц, У. Если бы мы попытались обозначить одну аминокислоту одним нуклеотидом, то можно было бы зашифровать лишь 4 аминокислоты, тогда как их 20 и все они используются в синтезе белков. Двухбуквенный код позволил бы зашифровать 16 аминокислот (из 4 нуклеотидов можно составить 16 различных комбинаций, в каждой из которых имеется 2 нуклеотида). В природе же существует трехбуквенный, или триплетный, код. Это означает, что каждая из 20 аминокислот зашифрована последовательностью 3 нуклеотидов, т. е. триплетом, который получил название кодон. Из 4 нуклеотидов можно создать 64 различные комбинации, по 3 нуклеотида в каждой (43=64). Этого с избытком хватает для кодирования 20 аминокислот и, казалось бы, 44 триплета являются лишними. Однако это не так. Почти каждая аминокислота шифруется более чем одним кодоном (от 2 до 6). Это видно из таблицы генетического кода.

 

Описание: Описание: Описание: Описание: Описание: Описание: http://gerontology-explorer.narod.ru/Storage/09.11.2007_23-06-53.jpg
 

Код однозначен. Каждый триплет шифрует только одну аминокислоту. У всех здоровых людей в гене, несущем информацию об одной из цепей гемоглобина, триплет ГАА или ГАГ, стоящий на шестом месте, кодирует глутаминовую кислоту. У больных серповидноклеточной анемией второй нуклеотид в этом триплете заменен на У. Как видно из таблицы генетического кода, триплеты ГУА или ГУГ, которые в этом случае образуются, кодируют аминокислоту валин. К чему приводит такая замена, вы знаете из § Генетическая информация. Удвоение ДНК. Между генами имеются знаки препинания. Каждый ген кодирует одну полипептидную цепочку. Поскольку в ряде случаев иРНК является копией нескольких генов, они должны быть отделены друг от друга. Поэтому в генетическом коде существуют три специальные триплета (УАА, УАГ, УГА), каждый из которых обозначает прекращение синтеза одной полипептидной цепи. Таким образом эти триплеты выполняют функцию знаков препинания. Они находятся в конце каждого гена.

СВОЙСТВА ГЕНЕТИЧЕСКОГО КОДА

1. Генетический код триплетен. Каждая аминокислота кодирует­ся группой из трех нуклеотидов.

 2. Вырожденность генетического кода. Одна аминокислота мо­жет кодироваться не одним, а несколькими определенными трип­летами нуклеотидов.

 3. Однозначность генетического кода. Каждому кодону соответ­ствует только одна аминокислота, т. е. триплет шифрует только одну аминокислоту.

  4. Неперекрываемость генетического кода. Процесс считыва­ния генетического кода не допускает возможности перекрыва­ния кодонов. Начавшись на определенном кодоне, считывание следующих идет без пропусков, т. е. внутри гена нет знаков пре­пинания. Например, при выпадении одного или двух нуклеоти­дов из цепи, при считывании образуется белок, не имеющий ничего общего с тем белком, который кодировался нормаль­ным геном.

 5. Универсальность генетического кода. Генетическая информация для всех организмов, обладающих разным уровнем организа­ции (от ромашки до человека), кодируется одинаково.

 6. Линейность генетического кода. Кодоны прочитываются последовательно в направлении закодированной записи от 5 ‘-конца к 3′-концу. «До научные» представления о передаваемых по наследству признаках у человека существовали уже в античные времена. Такие со­общения встречаются в трудах Гиппократа, Аристотеля, Платона и других древнегреческих врачей и философов. Примечателен тот факт, что они не только описывали случаи наследования отдельных при­знаков, но и предлагали теоретические объяснения и даже меры по улучшению человеческой природы. Например, Гиппократу принад­лежит теория пангенезиса, согласно которой семя производится всеми частями тела — больными и здоровыми и, соответственно, больное семя производит больные части тела, а здоровое — здо­ровые.

 

Транскрипция - биосинтез рибонуклеиновой кислоты (РНК) на матрице - дезоксирибонуклеиновой кислоте (ДНК). Транскрипция - один из фундаментальных биологических процессов, первый этап реализации генетической информации, записанной в ДНК в виде линейной последовательности 4 типов мономерных звеньев - нуклеотидов. Она осуществляется специальными ферментами, работа которых определяется так называемыми транскрипционными факторами.

Описание: Описание: C:\Users\admin\Desktop\Русский\07Биосинтез и катаболизм пуриновых нуклеотидов.files\image030.jpg

Ученые остановили свой исследовательский взгляд на проблеме транскрипции молекулы ДНК, т.е. на изучении механизмов переписывания информации с ДНК на молекулу РНК, с которой уже происходит синтез белков. Процесс этот начинается с "включения" энзима РНК-полимераза (RNAP). Этот энзим синтезирует новую цепочку РНК, химически "копируя" каждый нуклеотид ДНК. При этом он перемещается вниз по молекуле до конца определенного гена, оставляя за собой новую синтезированную копию РНК. "РНКп - один из самых важных в природе энзимов, - говорит Блок. - Поэтому понимание того, как происходит копирование ДНК, очень важно для молекулярной биологии, генной инженерии и медицины. Без РНК не было бы синтеза белков, а без него - жизни вообще".

Уже много лет известно, что РНК синтезируется постепенно - в одну единицу времени синтезируется один нуклеотид. Но остается открытым вопрос: как при этом перемещается вдоль молекулы ДНК энзим РНК-полимераза. То ли он скользит вдоль нуклеотидов, то ли перепрыгивает от одного к другому. Этот последний процесс был назван дискретным перемещением. Ученые приводят пример с чтением книги: когда глаза скользят по строке, то взгляд не останавливается на отдельных буквах, а "глотает" слова целиком, перепрыгивая от одного к другому.  Нуклеотиды А, Т, Г или Ц в молекуле ДНК разделены промежутком в 3.4 ангстрема, поэтому современные микроскопы с пределом разрешения в 10 ангстрем не могли помочь узнать, как происходит перемещение энзима. Работа по улучшению "оптического пинцета" микроскопа велась исследователями почти десятилетие.

В результате транскрипции образуется один из 4 типов РНК, выполняющих различные функции: 1) информационные, или матричные, РНК, выполняющие роль матриц при синтезе белка рибосомами (трансляция); 2) рибосомальные РНК, являющиеся структурными компонентами рибосом; 3) транспортные РНК, являющиеся основными элементами, осуществляющими при синтезе белка перекодирование информации, заключённой в информационной РНК, с языка нуклеотидов на язык аминокислот; 4) РНК, играющие роль затравки репликации ДНК. Число копий разных участков ДНК зависит от потребности клеток в соответственных белках и может меняться в зависимости от условий среды или в ходе развития организма.

 

КРАТКАЯ ИСТОРИЯ ОТКРЫТИЯ мРНК

В начале 50-х годов Ф. Крик сформулировал свою знаменитую центральную догму молекулярной биологии, согласно которой генетическая информация от ДНК к белкам передается через РНК по схеме ДНК РНК белок. Процесс синтеза РНК на матрице ДНК называется транскрипцией, процесс синтеза белка на матрице РНК - трансляцией.
В 1956-1957 годах А.Н. Белозерский и А.С. Спирин показали, что при существенных различиях в нуклеотидном составе ДНК из разных организмов нуклеотидный состав суммарных РНК весьма сходен. На основании этих данных они пришли к сенсационному заключению о том, что суммарная РНК клетки не может выступать в качестве переносчика генетической информации от ДНК к белкам, поскольку не соответствует ей по своему составу. Вместе с тем они заметили, что при значительном изменении нуклеотидного состава ДНК при переходе от организма к организму наблюдается некоторый небольшой сдвиг нуклеотидного состава РНК в ту же сторону. Это позволило предположить существование минорной фракции РНК, которая полностью соответствует по своему нуклеотидному составу ДНК и которая может быть истинным переносчиком генетической информации от ДНК к белкам. Целенаправленный поиск такой РНК, предпринятый сразу в нескольких ведущих лабораториях мира, увенчался успехом в 1961 году. В том году С. Бреннер, Ф. Жакоб и М. Месельсон, с одной стороны, и Ф. Гро и Дж. Уотсон с сотрудниками - с другой, обнаружили ДНК-подобную РНК у бактерий. В течение последующих двух-трех лет аналогичная РНК была найдена в самых разных эукариотических организмах. Для ее обозначения был предложен термин "информационная, или матричная, РНК (мРНК)".

 

НЕКОТОРЫЕ СВОЙСТВА мРНК

Рибосома в процессе синтеза белка.

По своим свойствам мРНК про- и эукариот существенно различаются. Бактериальные мРНК очень нестабильны. Период их полураспада составляет всего несколько минут. Эти мРНК обычно не претерпевают существенных модификаций после синтеза и могут начинать транслироваться в белок еще до полного завершения их транскрипции. Быстрое вовлечение в белковый синтез, с одной стороны, и нестабильность мРНК бактерий - с другой, обеспечивают оперативный контроль белкового синтеза на уровне транскрипции. Содержание мРНК в бактериальной клетке составляет всего 1-2% общего количества РНК в клетке.

Описание: Описание: C:\Users\admin\Desktop\Русский\07Биосинтез и катаболизм пуриновых нуклеотидов.files\image031.jpg

Транскрипция и трансляция мРНК прокариот (а); транскрипция, процессинг и трансляция мРНК эукариот

Эукариотические мРНК довольно стабильны. Период их полураспада измеряется часами и даже сутками. Их транскрипция и трансляция пространственно разобщены. Транскрипция протекает в ядре, а трансляция - в цитоплазме (рис. ). Эукариотические мРНК синтезируются в виде предшественников и проходят в своем биогенезе стадию довольно сложного созревания, или процессинга. Процессинг включает в себя: 1) кэпирование 5'-конца, заключающееся в присоединении к этому концу мРНК так называемой шапочки (кэп -структуры), 2) полиаденилирование 3'-конца и, наконец, 3) сплайсинг - вырезание протяженных внутренних участков мРНК, так называемых интронов, и ковалентное воссоединение оставшихся фрагментов (экзонов) через обычную фосфодиэфирную связь (подробнее см. в статье: Гвоздев В.А. Регуляция активности генов при созревании клеточных РНК. Все перечисленные стадии созревания происходят в клеточном ядре, и в цитоплазму поступают уже процессированные, зрелые мРНК. Транспорт мРНК из ядра в цитоплазму осуществляется через ядерные поры. Все стадии процессинга и транспорта - регулируемые процессы. Время от начала синтеза мРНК до ее выхода в цитоплазму составляет не менее десяти минут. Высокая стабильность мРНК и сравнительно длительное время от начала синтеза до выхода в цитоплазму делают невозможной оперативную регуляцию белкового синтеза на уровне транскрипции. В связи с этим в клетках эукариот существенно возрастает роль регуляции белкового синтеза на посттранскрипционном уровне, а эукариотические клетки содержат значительно больше мРНК, чем бактериальные. Часть таких мРНК может находиться в неактивном (репрессированном или маскированном) состоянии.
мРНК прокариот очень часто являются полицистронными, то есть содержат информацию для нескольких полипептидных (белковых) цепей. Зрелые эукариотические мРНК, как правило, моноцистронны и кодируют только одну полипептидную цепь. Те части молекулы мРНК, в которых закодированы белки, называются транслируемыми областями. Однако помимо транслируемых областей в мРНК имеются достаточно протяженные последовательности, не кодирующие белок. Общая длина этих нетранслируемых областей порой может достигать или даже превышать длину транслируемых областей. Нетранслируемые области находятся на обоих концах молекул мРНК и соответственно называются 5'- и 3'-НТО. В прокариотических полицистронных мРНК имеются также внутренние межцистронные нетранслируемые области, располагающиеся между транслируемыми областями. Наряду с информацией о последовательности аминокислот в белке молекулы мРНК содержат информацию, определяющую их поведение в клетке (активность и время жизни, внутриклеточное распределение). Эта информация находится в основном в нетранслируемых областях мРНК.

Трансляция – процесс биосинтеза полипептидных цепей белков в живых клетках. Заключается в «считывании» генетической информации, «записанной» в виде последовательности нуклеотидов в молекулах информационных (матричных) рибонуклеиновых кислот (иРНК, или мРНК), причём нуклеотидная последовательность иРНК определяет последовательность аминокислот в синтезируемых белках.

.Описание: Описание: C:\Users\admin\Desktop\Русский\07Биосинтез и катаболизм пуриновых нуклеотидов.files\image032.jpg

 

Общая схема процесса трансляция. Трансляция осуществляется особыми внутриклеточными частицами - рибосомами, с которыми связываются иРНК и активированные аминокислотные производные транспортных РНК (ак-тРНК). При этом ак-тРНК «узнают» в иРНК определённые тройки нуклеотидов (кодоны), соответствующие связанным с ними аминокислотам. Узнавание происходит за счёт комплементарного взаимодействия кодона иРНК с антикодоном (3 нуклеотидных остатка, комплементарных кодону) тРНК. Все стадии Трансляции катализируются специфическими белковыми факторами и гуанозинтрифосфатом (ГТФ). Кроме клеточных и РНК, их роль в процессе трансляции могут выполнять вирусные РНК и синтетические полинуклеотиды, что широко используется при изучении механизма биосинтеза белка в бесклеточных системах.

Посттрансляционные модификации белков

Многие белки и секретируемые пептиды претерпевают различные структурные изменения в результате котрансляционных и посттрансляционных модификаций, т.е. во время или после завершения их синтеза рибосомами. Описано более 100 различных посттрансляционных модификаций белков . Роль большинства этих модификаций не выяснена; некоторые из них случайны и, по-видимому, не имеют функционального значения, но есть и такие, которые важны для жизни клетки, так как они тщательно контролируются специфическими ферментами. Модификации происходят в ЭР и аппарате Гольджи . В этих органеллах , например, ферменты гликозилирования добавляют к белкам сложные цепи остатков сахаров, образуя гликопротеины. Единственный известный случай гликозилирования в цитозоле клеток млекопитающих - это добавление к белкам N-ацетилглюкозамина.

Однако множество других ковалентных модификаций протекает в первую очередь именно в цитозоле. Некоторые из них стабильны и необходимы для активности белка, например, ковалентное присоединение коферментов (биотина, липоевой кислоты или пиридоксальфосфата).

Среди известных в настоящее время модификаций описана одна, чрезвычайно важная для доставки белков к месту назначения. Присоединение жирной кислоты к белку направляет его к определенным мембранам, обращенным в цитозоль. Важной функцией фосфоинозитидов является так называемая якорная функция - к ним прикрепляются многочисленные белки наружной поверхности клетки. 

Для фосфоинозитидов, служащих якорем мембранных белков, характерно высокое содержание миристиновой кислоты. В якорных фосфоинозитидах инозитольная часть липида гликолизирована. Связь белков с фосфоинозитидгликанами осуществляется через концевой этаноламин.

Определенные ковалентные модификации, происходящие в цитозоле, обратимы и служат для регуляции активности многих белков. Многие клеточные процессы регулируются путем обратимого фосфорилирования-дефосфорилирования белков.

Посттрансляционные модификации включают в себя фосфорилирование факторов транскрипции протеинкиназами , гликозилирование остатков Asn в последовательностях Asn-X- [SerThr], N-концевое ацилирование, циклизацию N-концевого остатка Glu с образованием пироглутаминовой кислоты, C-концевое амидирование последовательностей освобождающихся пептидов, гидроксилирование остатков Lys и Pro, метилирование различных остатков аминокислот.

Многие из перечисленных модификаций являются критическими для биологической активности пептидов. В частности, карбоксиамидирование C-концевого Gly активирует окситоцин и вазопрессин , а перенос сульфогруппы на остаток Tyr в холецистокинине-8 оказывается критическим для проявления его активности в поджелудочной железе. N-Ацетилирование бета-эндорфина блокирует его опиоидную активность, тогда как ацетилирование меланоцитстимулирующего гормона усиливает его влияние на синтез меланинов. Поскольку большинство этих модификаций - тканеспецифические, пептиды, обладающие различной биологической активностью, должны быть доставлены к различным тканям в виде предшественников, где они претерпевают специфический процессинг.

Ингибиторы синтеза белка

Один из путей выяснения тонких молекулярных механизмов синтеза нуклеиновых кислот и белков в клетках – использование таких лекарственных препаратов, которые могли бы избирательно тормозить эти процессы у бактерий, не влияя на клетки организма человека. Некоторые препараты, действительно, оказывают такое избирательное действие, взаимодействуя с белками рибосом прокариот и выключая бактериальный синтез белка. Однако многие из них являются токсичными и для человека. В настоящее время в медицинской практике применяются многие антибиотики, часть из которых будет рассмотрена с целью выяснения молекулярного механизма их действия на ключевые химические реакции синтеза белка и нуклеиновых кислот.

Один из мощных ингибиторов белкового синтеза – пуромицин. Он представляет собой аналог концевого участка аминоацил-тРНК адениловой кислоты и поэтому легко взаимодействует с А-центром пептидил-тРНК с образованием пептидил-пуромицина

Пептидил-пуромицин не несет на себе триплета антикодона и поэтому тормозит элонгацию пептидной цепи, вызывая обрыв реакции, т.е. преждевременную терминацию синтеза белка. При помощи пуромицина было доказано, например, что гормональный эффект в ряде случаев зависит от синтеза белка de novo. Укажем также, что пуромицин оказывает тормозящее действие на синтез белка как у прокариот, так и у эукариот.

Белковый синтез тормозится актиномицином D, обладающим противоопухолевым эффектом, однако вследствие высокой токсичности препарат применяется редко. Он тормозит синтез всех типов клеточной РНК, особенно мРНК. Данное свойство объясняется тормозящим влиянием актиномицина D на ДНК-зависимую РНК-полимеразу, поскольку он связывается с остатками дезоксигуанозина цепи ДНК, выключая матричную функцию последней; это дает основание считать, что актиномицин D ингибирует транскрипцию ДНК.

Другим антибиотиком, также тормозящим синтез клеточной РНК, является используемый при лечении туберкулеза рифамицин. Этот препарат тормозит ДНК-зависимую РНК-полимеразу, связываясь с ферментом. Наиболее чувствительной к нему оказалась бактериальная РНК-полиме-раза. На организм животных этот антибиотик оказывает незначительное влияние. По механизму действия он резко отличается от актиномицина D. Следует указать, кроме того, на недавно открытое противовирусное действие рифамицина; в частности, он успешно используется при лечении трахомы, которая вызывается ДНК-содержащим вирусом. Это дает основание предположить, что данный антибиотик найдет применение в клинической онкологии при лечении опухолей, вызываемых вирусами.

Одним из мощных ингибиторов синтеза вирусной РНК оказался азидотимидин (3'-азидо-2',3'-дидезокситимидин), синтезированный еще в 1964 г. в надежде на его противоопухолевый эффект. Было показано, что вирус иммунодефицита человека (ВИЧ) содержит РНК-й геном, в составе которого имеются как стандартные гены ретровирусов, так и необычные небольшие гены со множеством функций. Последние, в частности, подвержены мутациям с высокой скоростью вследствие низкой точности репликации, вызванной свойствами обратной транскриптазы. Эта вирусная обратная транскриптаза иммунодефицита человека оказалась наделенной значительно большим сродством к азидотимидину, чем к природному дезокситимидинтрифосфату (dTТФ). Азидотимидин конкурентно тормозит связывание dTТФ, вызывая тем самым терминацию (окончание) синтеза вирусной РНК.

Выяснены некоторые детали механизма действия ряда других антибиотиков, используемых при лечении тифозных инфекций. Так, хлорам-феникол оказывает ингибирующее влияние на пептидилтрансферазную реакцию (на стадии элонгации) синтеза белка в 70S рибосоме бактерий; на этот процесс в 80S рибосоме он не действует. Тормозит синтез белка в 80S рибосоме (без поражения процесса в 70S рибосоме) циклогексимид – специфический ингибитор транслоказы.

Весьма интересен молекулярный механизм действия дифтерийного токсина. Он оказался наделенным способностью катализировать реакцию АДФ-рибозилирования фактора элонгации эукариот (eEF-2), выключая тем самым его из участия в синтезе белка. Резистентность многих животных к дифтерийному токсину, вероятнее всего, обусловлена трудностью или полным отсутствием проникновения (транспорта) токсина через мембрану клеток.

Противотуберкулезные и антибактериальные антибиотики, в частности стрептомицин и неомицин, действуют на белоксинтезирующий аппарат чувствительных к ним штаммов бактерий. Было высказано предположение, что эти антибиотики обусловливают ошибки в трансляции мРНК, приводящие к нарушению соответствия между кодонами и включаемыми аминокислотами: например, кодон УУУ вместо фенилаланина начинает кодировать лейцин, в результате чего образуется аномальный белок, что приводит к гибели бактерий.

Широко применяемые в клинике тетрациклины также оказались ингибиторами синтеза белка в 70S рибосоме (меньше тормозится синтез в 80S рибосоме). Они легко проникают через клеточную мембрану. Считают, что тетрациклины тормозят связывание аминоацил-тРНК с аминоацильным центром в 50S рибосоме. Возможно, что тетрациклины химически связываются с этим центром, выключая тем самым одну из ведущих стадий процесса трансляции.

Пенициллины не являются истинными ингибиторами синтеза белка, однако их антибактериальный эффект связан с торможением синтеза гексапептидов, входящих в состав клеточной стенки. Механизм их синтеза отличается от рибосомного механизма синтеза белка. Эритромицин и олеандомицин тормозят активность транслоказы в процессе трансляции, подобно циклогексимиду, исключительно в 80S рибосомах, т.е. тормозят синтез белка в клетках животных.

Полученные к настоящему времени данные о механизме действия антибиотиков на синтез белка с учетом стадии и топографии процесса трансляции суммированы в табл. 14.2 .

Описание: Описание: C:\Users\admin\Desktop\Русский\07Биосинтез и катаболизм пуриновых нуклеотидов.files\image033.jpg

Следует еще раз подчеркнуть, что нарушение или выпадение любого звена, участвующего в синтезе белка, почти всегда приводит к развитию патологии, причем клинические проявления болезни будут определяться природой и функцией белка, синтез которого оказывается нарушенным (структурный или функциональный белок). Иногда синтезируются так называемые аномальные белки как результат действия мутагенных факторов и соответственно изменения генетического кода (например, гемоглобин при серповидно-клеточной анемии). Последствия этих нарушений могут выражаться в развитии самых разнообразных синдромов или заканчиваться летально.

Следует отметить, однако, что организм располагает мощными механизмами защиты. Подобные изменения генетического аппарата быстро распознаются специфическими ферментами – рестриктазами, измененные последовательности вырезаются и вновь замещаются соответствующими нуклеотидами при участии полимераз и лигаз.

 

РЕГУЛЯЦИЯ СИНТЕЗА БЕЛКА

Клетки живых организмов обладают способностью синтезировать огромное количество разнообразных белков. Однако они никогда не синтезируют все белки. Количество и разнообразие белков, в частности ферментов, определяются степенью их участия в метаболизме. Более того, интенсивность обмена регулируется скоростью синтеза белка и параллельно контролируется аллостерическим путем. Таким образом, синтез белка регулируется внешними и внутренними факторами и условиями, которые диктуют клетке синтез такого количества белка и такого набора белков, которые необходимы для выполнения физиологических функций. Все это свидетельствует о весьма сложном, тонком и целесообразном механизме регуляции синтеза белка в клетке.

Общую теорию регуляции синтеза белка разработали французские ученые, лауреаты Нобелевской премии Ф. Жакоб и Ж. Моно. Сущность этой теории сводится к «выключению» или «включению» генов как функционирующих единиц, к возможности или невозможности проявления их способности передавать закодированную в структурных генах ДНК генетическую информацию на синтез специфических белков. Эта теория, доказанная в опытах на бактериях, получила широкое признание, хотя в эукариотических клетках механизмы регуляции синтеза белка, вероятнее всего, являются более сложными (см. далее). У бактерий доказана индукция ферментов (синтез ферментов de novo) при добавлении в питательную среду субстратов этих ферментов. Добавление конечных продуктов реакции, образование которых катализируется этими же ферментами, напротив, вызывает уменьшение количества синтезируемых ферментов. Это последнее явление получило название репрессии синтеза ферментов. Оба явления — индукция и репрессия — взаимосвязаны.

Согласно теории Ф. Жакоба и Ж. Моно, в биосинтезе белка у бактерий участвуют по крайней мере 3 типа генов: структурные гены, ген-регулятор и ген-оператор. Структурные гены определяют первичную структуру синтезируемого белка. Именно эти гены в цепи ДНК являются основой для биосинтеза мРНК, которая затем поступает в рибосому и, как было указано, служит матрицей для биосинтеза белка. Регуляция синтеза белка путем индукции представлена на рис. 14.12.

Описание: Описание: Описание: Описание: Описание: Описание: http://www.studychem.com/images/a/img629.jpg

Синтез мРНК на структурных генах молекулы ДНК непосредственно контролируется определенным участком, называемым геном-оператором. Он служит как бы пусковым механизмом для функционирования структурных генов. Ген-оператор локализован на крайнем отрезке структурного гена или структурных генов, регулируемых им. «Считывание» генетического кода, т. е. формирование мРНК, начинается с промотора — участка ДНК, расположенного рядом с геном-оператором и являющегося точкой инициации для синтеза мРНК, и распространяется последовательно вдоль оператора и структурных генов. Синтезированную молекулу мРНК, кодирующую синтез нескольких разных белков, принято называть полигенным (полицистронным) транскриптом. Координированный одним оператором одиночный ген или группа структурных генов образует оперон.

В свою очередь деятельность оперона находится под контролирующим влиянием другого участка цепи ДНК, получившего название гена-регулятора. Структурные гены и ген-регулятор расположены в разных участках цепи ДНК,  поэтому связь между ними,  как предполагают Ф. Жакоб и Ж. Моно, осуществляется при помощи вещества-посредника, оказавшегося белком и названного репрессором. Образование репрессора происходит в рибосомах ядра на матрице специфической мРНК, синтезированной на гене-регуляторе (рис. 14.13). Репрессор имеет сродство к гену-оператору и обратимо соединяется с ним в комплекс. Образование такого комплекса приводит к блокированию синтеза мРНК и, следовательно, синтеза белка, т. е. функция гена-регулятора состоит в том, чтобы через белок-репрессор прекращать (запрещать) деятельность структурных генов, синтезирующих мРНК. Репрессор, кроме того, обладает способностью строго специфически связываться с определенными низкомолекулярными веществами, называемыми индукторами, или эффекторами. Если такой индуктор соединяется с репрессором, то последний теряет способность связываться с геном-оператором, который, таким образом, выходит из-под контроля гена-регулятора, и начинается синтез мРНК. Это типичный пример отрицательной формы контроля, когда индуктор, соединяясь с белком-репрессором, вызывает изменения его третичной структуры настолько, что репрессор теряет способность связываться с геном-оператором. Процесс этот аналогичен взаимоотношениям алло-стерического центра фермента с эффектором, под влиянием которого изменяется третичная структура фермента и он теряет способность связываться со своим субстратом.

Описание: Описание: Описание: Описание: Описание: Описание: http://www.studychem.com/images/a/img630.jpg

Механизм описанной регуляции синтеза белка и взаимоотношения репрессора со структурными генами были доказаны в опытах с Е. coli на примере синтеза Р-галактозидазы (лактазы) — фермента, расщепляющего молочный сахар на глюкозу и галактозу. Дикий штамм Е. coli обычно растет на глюкозе. Если вместо глюкозы в питательную среду добавить лактозу (новый источник энергии и углерода), то штамм не будет расти, пока не будут синтезированы соответствующие ферменты (адаптивный синтез). При поступлении в клетку лактозы (индуктор) молекулы ее связываются с белком-репрессором и блокируют связь между репрессором и геном-оператором. Ген-оператор и структурные гены при этом начинают снова функционировать и синтезировать необходимую мРНК, которая «дает команду» рибосомам синтезировать Р-галактозидазу. Одновременно ген-регулятор продолжает вырабатывать репрессор, но последний блокируется новыми молекулами лактозы, поэтому синтез фермента продолжается. Как только молекулы лактозы будут полностью расщеплены, репрессор освобождается и, поступив в ДНК, связывает ген-оператор и блокирует синтез мРНК, а следовательно, синтез Р-галактозидазы в рибосомах.

Таким образом, биосинтез мРНК, контролирующий синтез белка в рибосомах, зависит от функционального состояния репрессора. Этот реп-рессор представляет собой тетрамерный белок с общей мол. массой около 150000. Если он находится в активном состоянии, т. е. не связан с индуктором, то блокирует ген-оператор и синтеза мРНК не происходит. При поступлении метаболита — индуктора — в клетку его молекулы связывают репрессор, превращая его в неактивную форму (или, возможно, снижают его сродство к гену-оператору). Структурные гены выходят из-под запрещающего контроля и начинают синтезировать нужную мРНК.

Как было указано, концентрация ряда ферментов в клетках резко снижается при повышении содержания отдаленных конечных продуктов, образующихся в цепи последовательных ферментативных реакций. Такой эффект, получивший название репрессии ферментов, часто наблюдается при реакциях биосинтеза. В этих случаях молекулы репрессора, также образующиеся в рибосомах ядра по «команде» гена-регулятора, являются неактивными и сами по себе не обладают способностью подавлять деятельность гена-оператора и, следовательно, всего оперона, но приобретают такую способность после образования комплекса с конечным или одним из конечных продуктов биосинтетического процесса (см. рис. 14.13).

Конечный продукт выступает, таким образом, в качестве корепрес-сора. Имеются данные, что в качестве корепрессоров в синтезе ферментов обмена аминокислот, по-видимому, выступает не только свободная аминокислота как конечный продукт биосинтетической реакции, но и комплекс ее с тРНК — аминоацил-тРНК.

В регуляции экспрессии структурных генов специфическое участие принимает особый белок — катаболитный генактивирующий белок (от англ. catabolite gene activation protein, сокращенно CAP). Этот белок, взаимодействующий с цАМФ, образует комплекс, способствующий прикреплению РНК-полимеразы к промоторному участку генома. В присутствии комплекса САР-цАМФ фермент может начать транскрипцию оперона, включая структурные гены, т. е. в клетках имеется еще один, дополнительный САР-цАМФ-регулятор, действующий, скорее всего, в качестве положительного регулятора, поскольку его присутствие необходимо для начала экспрессии гена.

Таким образом, концепция Ф. Жакоба и Ж. Моно о механизме проявления (экспрессии) активности генов признана одним из блестящих достижений молекулярной биологии. Она явилась логическим развитием многочисленных исследований, проведенных генетиками и биохимиками в предшествующие десятилетия.

Регуляция экспрессии активности генов у эукариот осуществляется значительно более сложным путем, поскольку процессы транскрипции и трансляции разделены не только пространственно ядерной биомембраной, но и во времени. Эта регуляция базируется как минимум на 6 уровнях сложных биологических процессов, определяющих скорость синтеза и распада генетического продукта (рис. 14.14).

Описание: Описание: Описание: Описание: Описание: Описание: http://www.studychem.com/images/a/img631.jpg

Для большинства эукариотических клеток, как и клеток прокариот, стадия инициации транскрипции является основной, главной регуляторной точкой экспрессии активности генов. Тем не менее имеются существенные различия: во-первых, место процессов транскрипции (в ядре) и трансляции (в цитоплазме); во-вторых, активирование транскрипции у эукариот связано с множеством сложных изменений структуры хроматина в транскрибируемой области; в-третьих, в эукариотических клетках превалируют положительные регуляторные механизмы над отрицательными.

Положительная или отрицательная регуляция определяется типом белков, вовлеченных в механизм регуляции. Получены доказательства существования минимум 3 типов белков, участвующих в регуляции процесса инициации транскрипции, опосредованного через РНК-полимеразу: специфические факторы, репрессоры и активаторы. Первые вызывают изменение специфичности РНК-полимеразы к данному промотору или группе промоторов; репрессоры связываются с промотором, блокируя тем самым доступ РНК-полимеразы к промотору; активаторы, напротив, связываются вблизи промоторного участка, повышая связывание промотора и РНК-полимеразы.

В многоклеточных организмах среднее число регуляторных сайтов для одного гена минимум равно пяти; положительные регуляторные белки связываются со своими специфическими последовательностями в структуре ДНК (вероятнее всего, посредством водородных связей между амидной группой Глн или Асн и пуриновыми и пиримидиновыми основаниями нуклеотидов). Следует указать еще на один момент, почему эукариотическая клетка использует положительные механизмы регуляции экспрессии генов. Подсчитано, что в геноме человека содержится около 100000 генов, соответственно каждая клетка при отрицательном механизме регуляции могла бы синтезировать 100000 разных репрессоров, причем в достаточных количествах. При положительном механизме регуляции большинство генов в принципе неактивно, соответственно молекула РНК-полимеразы не связывается с промотором и клетка синтезирует ограниченный и избирательный круг активаторных белков, необходимых для инициации транскрипции.

У эукариот выделены и охарактеризованы также пять регуляторных белков, получивших название транскрипционных факторов (TF: 11А, 11В, IID, 11Е и IIF). Они необходимы для узнавания участка (сайта) ДНК, названного TATA (concensus последовательности, ТАТАААА). Детальный молекулярный механизм действия факторов транскрипции пока не раскрыт.

Более подробно в структурном и функциональном отношении у эукариот изучена группа белков, получивших название белков—активаторов транскрипции. Эти белки имеют специфические структурные домены для связывания с другими, но определенными регуляторными нуклеотидными последовательностями в молекуле ДНК. В частности, они содержат домен, специфически связывающийся с ДНК, и один или несколько доменов, необходимых для активирования или взаимодействия с другими регуляторными белками. Среди этих белков — активаторов транскрипции имеются белки, содержащие богатые глутамином домены (до 25%) и богатые пролином домены. Следует отметить, однако, что некоторые из них или почти все регуляторные белки активируют транскрипцию не прямо, а опосредованно—через промежуточные белки, названные коактиваторами. Происхождение и механизм действия последних также не выяснены.

Рассмотрим кратко вопрос о регуляции процессов дифференцировки клеток высших организмов. ДНК, присутствующая во всех соматических клетках, вероятнее всего, имеет одинаковую первичную структуру у данного организма и соответственно располагает информацией для синтеза любых или всех белков тела. Тем не менее клетки печени, например, синтезируют сывороточные белки, а клетки молочной железы — белки молока. Нет сомнения в том, что в дифференцированных клетках имеется весьма тонкий механизм контроля деятельности ДНК в разных тканях, обеспечивающий синтез многообразия белков.

Механизмы, лежащие в основе этой регуляции, пока неизвестны. Для их объяснения существует ряд гипотез. Предполагают, что контроль осуществляется на уровне транскрипции по аналогии с индукцией ферментов у бактерий и что в этом случае в клетках животных должны функционировать аналогичные репрессоры. С молекулой ДНК у эукариот связаны гистоны, поэтому считается, что именно эти белки выполняют роль репрессоров. Прямых доказательств их роли в качестве репрессоров не получено, хотя, как было показано, в клетках эукариот открыт класс регуляторных белков процесса транскрипции. Высказано предположение, что в ядре синтезируется высокомолекулярная молекула мРНК, содержащая информацию для синтеза широкого разнообразия белков, но в цитоплазму попадает только небольшая часть зрелой мРНК, а основная часть ее распадается. Неясны, однако, биологический смысл и назначение этого механизма избирательного распада и соответственно траты огромной массы молекулы мРНК.

Существует еще одно предположение, что на ДНК клетки синтезируются все мыслимые, возможные мРНК, которые поступают в цитоплазму, и процесс трансляции регулируется путем специфического и избирательного  взаимодействия  рибосом  с  определенными молекулами мРНК.

Oddsei - What are the odds of anything.