Медицина

ВСТУПЛЕНИЕ В БИОХИМИЮ

Вступление в биохимию.СТРОЕНИЕ И СТРУКТУРА БЕЛКОВ, ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА ПРОСТЫХ И СЛОЖНЫХ БЕЛКОВ. СЛОЖНЫЕ БЕЛКИ.

 

Биохи́мия (биологи́ческая, или физиологи́ческая хи́мия)  наука о химическом составе живых клеток и организмов и о химических процессах, лежащих в основе их жизнедеятельности. Термин «биохимия» эпизодически употреблялся с серединыXIX века, в классическом смысле он был предложен и введён в научную среду в 1903 году немецким химиком Карлом Нойбергом(Carl Neuberg).

История развития

Как самостоятельная наука биохимия сформировалась примерно 100 лет назад, однако биохимические процессы люди использовали ещё в глубокой древности, не подозревая, разумеется, об их истинной сущности. В самые отдалённые времена уже была известна технология таких основанных на биохимических процессах производств, как хлебопечениесыроварение,виноделиевыделка кож. Необходимость борьбы с болезнями заставляла задумываться о превращениях веществ в организме, искать объяснения целебным свойствам лекарственных растений. Использование растений в пищу, для изготовления красок итканей также приводило к попыткам понять свойства веществ растительного происхождения.

Арабский учёный и врач X века Авиценна в своей книге «Канон врачебной науки» подробно описал многие лекарственные вещества[2].

Итальянский учёный и художник Леонардо да Винчи на основании своих опытов сделал важный вывод о том, что живой организм способен существовать только в такой атмосфере, в которой может гореть пламя.

XVIII век ознаменовался трудами М. В. Ломоносова и А. Л. Лавуазье. На основе открытого ими закона сохранения массы веществ и накопленных к концу столетия экспериментальных данных, была объяснена сущность дыхания и исключительная роль в этом процессе кислорода.

Изучение химии жизни уже в 1827 г. привело к принятому до сих пор разделению биологических молекул на белкижиры иуглеводы. Автором этой классификации был английский химик и врач Уильям Праут. В 1828 году немецкий химик Ф. Вёлерсинтезировал мочевину: сначала — из циановой кислоты и аммиака (выпариванием раствора образующегося цианата аммония), а позже в этом же году — из углекислого газа и аммиака. Тем самым впервые было доказано, что химические вещества живого организма могут быть синтезированы искусственно, вне организма. Работы Вёлера нанесли первый удар по теориям представителей школы виталистов, предполагавших присутствие во всех органических соединениях некой «жизненной силы». Последующими мощными толчками в этом направлении химии явились лабораторные синтезы липидов (в 1854 году — П. БертлоФранция) и углеводов из формальдегида (1861 — А. М. Бутлеров, Россия). Бутлеровым была также разработана теория строения органических соединений. (1861).

В 1882 году Иван Горбачевский впервые в мире осуществил синтез мочевой кислоты из глицина. В дальнейших исследованиях он установил источник и пути её образования в человеческом и животном организмах. В 1885 году ему удалось получить метилмочевую кислоту из метилгидантоина и карбамида. В 1886 году он предложил новый метод синтеза креатина, а в 1889—1891 годах открыл фермент ксантиноксидазу. Иван Горбачевский одним из первых указал, что аминокислоты являются составляющими белков.

Новый толчок развитию биологической химии дали работы по изучению брожения, инициированные Луи Пастером. В 1897 г.Эдуард Бухнер доказал, что ферментация сахара может происходить в присутствии бесклеточного дрожжевого экстракта, и это процесс не столько биологический, сколько химический. На рубеже XIX и XX веков работал немецкий биохимик Э. Фишер. Он сформулировал основные положения пептидной теории строения белков, установил структуру и свойства почти всех входящих в их состав аминокислот. Но лишь в 1926 г. Джеймсу Самнеру удалось получить первый чистый фермент, уреазу, и доказать, что фермент — это белок.

Биохимия стала первой биологической дисциплиной с развитым математическим аппаратом благодаря работам Холдейна,Михаэлиса, Ментен и других биохимиков, создавших ферментативную кинетику, основным законом которой является уравнение Михаэлиса-Ментен[3].

Открытие ферментов позволило начать грандиозную работу по полному описанию всех процессов метаболизма, не завершённую до сих пор. Одними из первых значительных находок в этой области стали открытия витаминовгликолиза и цикла трикарбоновых кислот.

В 1928 гФредерик Гриффит впервые показал, что экстракт убитых нагреванием болезнетворных бактерий может передавать признак патогенности неопасным бактериям. Исследование трансформации бактерий в дальнейшем привело к очистке болезнетворного агента, которым, вопреки ожиданиям, оказался не белок, а нуклеиновая кислота. Сама по себе нуклеиновая кислота не опасна, она лишь переносит гены, определяющие патогенность и другие свойства микроорганизма. В 1953 годуамериканский биолог Дж. Уотсон и английский физик Ф. Крик опираясь на работы М. Уилкинса и Р. Франклин описали структуруДНК — ключ к пониманию принципов передачи наследственной информации. Это открытие означало рождение нового направления науки — молекулярной биологии.

В 1958 Джордж Бидл и Эдуард Тейтем получили Нобелевскую премию за работу проведённую на грибах выводом которой стала гипотеза "один ген - один фермент"[4]. В 1988 Колин Питчфорк стал первым человеком, осуждённым за убийство на основе доказательств, полученных в результате ДНК-дактилоскопии доказательств, и первым преступником, пойманным в результате массового применения процедуры дактилоскопии. Из последних вех в развитии биохимии следует отметить получение Эндрю Файером и Крейгом Мелло Нобелевской премии по физиологии и медицине за «открытие РНК-интерференции — эффекта гашения активности определённых генов»

В основе биохимической методологии лежит фракционирование, анализ, изучение структуры и свойств отдельных компонентов живого вещества. Методы биохимии преимущественно формировались в XX веке; наиболее распространенными являютсяхроматография, изобретённая М. С. Цветом в 1906 г., центрифугирование (Т. Сведберг, 1923 г., Нобелевская премия по химии1926 г.) и электрофорез (А. Тизелиус, 1937 г., Нобелевская премия по химии 1948 г.).

С конца ХХ в. в биохимии всё шире применяются методы молекулярной и клеточной биологии, в особенности искусственная экспрессия и нокаут генов в модельных клетках и целых организмах (см. генная инженерия, биотехнология). Определение структуры всей геномной ДНК человека выявило приблизительно столько же ранее неизвестных генов и их неизученных продуктов, сколько уже было известно к началу XXI века благодаря полувековым усилиям научного сообщества. Оказалось, что традиционный химический анализ и очистка ферментов из биомассы позволяют получить лишь те белки, которые в живом веществе присутствуют в сравнительно большом количестве. Не случайно основная масса ферментов была открыта биохимиками в середине XX века и к концу столетия распространилось убеждение, что все ферменты уже открыты. Данныегеномики опровергли эти представления, но дальнейшее развитие биохимии требовало изменения методологии. Искусственая экспрессия ранее неизвестных генов предоставила биохимикам новый материал для исследования, часто недоступный традиционными методами. В результате возник новый подход к планированию биохимического исследования, который получил название обратная генетика или функциональная геномика[8]. Эта методология предоставляет биохимикам шанс изучать функции продуктов уже известных генов, в то время как ранее наука шла по пути определения структуры генов, кодирующих уже известные ферменты.

В последние десятилетия большое развитие произошло в области комьютерного моделирования. Эта методика позволяет исследовать свойства биомолекул там, где невозможно (или очень затруднительно) провести прямой эксперимент[9]. Методика основана на компьютерных программах, которые позволяют визуализировать структуру биомолекул, задать их предполагаемые свойства и наблюдать результирующие интеракции между молекулами, такие например как энзим  субстрат, энзим — коэнзим, энзим — ингибитор.

 

Белки – это высокомолекулярные азотсодержащие органические вещества, молекулы которых построены из остатков аминокислот. Название «протеины» (от греч. protos – первый, важнейший), по-видимому, более точно отражает первостепенное биологическое значение этого класса веществ.

Для живых организмов характерны широкое разнообразие белковых структур и их высокая упорядоченность; последняя существует во времени и пространстве. Удивительная способность живых организмов к воспроизведению себе подобных также связана с белками. Сократимость, движение – непременные атрибуты живых систем – имеют прямое отношение к белковым структурам мышечного аппарата. Наконец, жизнь немыслима без обмена веществ, постоянного обновления составных частей живого организма, т.е. без процессов анаболизма и катаболизма (этого удивительного единства противоположностей живого), в основе которых лежит деятельность каталитически активных белков – ферментов.

НОРМЫ БЕЛКА В ПИТАНИИ

Изучение проблемы нормы белка в питании человека имеет, кроме академического интереса, большое социальное значение. Принятые в нашей стране нормы белка для взрослого человека и для детей разного возраста основаны на результатах многочисленных научных исследований отечественных ученых, учитывают разные климатические условия, условия труда, профессию, возраст и другие факторы. Эти нормы выводятся из оптимального содержания белка в пищевом рационе. Так, взрослый человек, занимающийся умственным трудом или подвергающийся средней физической нагрузке (полностью механизированный труд), должен получать 100–120 г белка в сутки при трате общего количества энергии 12000 кДж. При изменении условий труда (недостаточно механизированный труд) и больших тратах энергии норма белка увеличивается на 10 г на каждые 2100 кДж. Рабочие, выполняющие тяжелую физическую работу, должны получать 130–150 г белка в сутки.

Потребности в белках детей определяются в первую очередь возрастом и массой тела. Дети даже раннего детского возраста нуждаются в 55–72 г белка в сутки. С возрастом (от 12 до 15 лет) эта норма увеличивается до суточной нормы взрослого человека. Суточные потребности в белке резко возрастают при беременности и лактации, а также при некоторых патологических состояниях, когда организм теряет белок с мочой или асцитной жидкостью, экссудатами при нефритах, тяжелых инфекционных заболеваниях, ожогах, травмах и т.д.

БИОЛОГИЧЕСКАЯ ЦЕННОСТЬ БЕЛКОВ

Состояние белкового обмена целостного организма зависит не только от количества принимаемого с пищей белка, но и от качественного состава его. В опытах на животных было показано, что получение одинакового количества разных пищевых белков сопровождается в ряде случаев развитием отрицательного азотистого баланса. Так, скармливание равного количества казеина и желатина крысам приводило к положительному азотистому балансу в первом случае и к отрицательному – во втором . Имел значение различный аминокислотный состав белков, что послужило основанием для предположения о существовании в природе якобы «неполноценных» белков. Оказалось, что из 20 аминокислот в желатине почти отсутствуют (или содержатся в малых количествах) валин, тирозин, метионин и цистеин; кроме того, желатин характеризуется другим, отличным от казеина процентным содержанием отдельных аминокислот. Этим можно объяснить тот факт, что замена в питании крыс казеина на желатин приводит к развитию отрицательного азотистого баланса. Приведенные данные свидетельствуют о том, что различные белки обладают неодинаковой пищевой ценностью. Поэтому для удовлетворения пластических потребностей организма требуются достаточные количества разных белков пищи. По-видимому, справедливо положение, что, чем ближе аминокислотный состав принимаемого пищевого белка к аминокислотному составу белков тела, тем выше его биологическая ценность. Следует, однако, отметить, что степень усвоения пищевого белка зависит также от эффективности его распада под влиянием ферментов желудочно-кишечного тракта. Ряд белковых веществ (например, белки шерсти, волос, перьев и др.), несмотря на их близкий аминокислотный состав к белкам тела человека, почти не используются в качестве пищевого белка, поскольку они не гидролизуются протеиназами кишечника человека и большинства животных.

С понятием биологической ценности белков тесно связан вопрос об эссенциальных (незаменимых) аминокислотах. Живые организмы существенно различаются в зависимости от их способности синтезировать аминокислоты или другие азотсодержащие соединения, которые они могут использовать для биосинтеза аминокислот. Высшие растения, например, могут синтезировать все необходимые для белкового синтеза аминокислоты, причем могут использовать для этого аммиак или нитраты в качестве источника азота. Микроорганизмы обладают различной способностью синтезировать аминокислоты. В частности, если Е. coli синтезирует все аминокислоты, используя нитриты и нитраты или аммиак, то мо-лочно-кислые бактерии не обладают этой способностью и получают аминокислоты в готовом виде из молока. Высшие позвоночные животные не синтезируют все необходимые аминокислоты. В организме человека и белых крыс синтезируются только 10 из 20 необходимых аминокислот – так называемые заменимые аминокислоты. Они могут быть синтезированы из продуктов обмена углеводов и липидов. Остальные 10 аминокислот не синтезируются в организме, поэтому они были названы жизненно необходимыми, эссенциальными, или незаменимыми аминокислотами (табл. 12.1).

http://www.xumuk.ru/biologhim/bio/img948.jpg

Незаменимость аминокислот для роста и развития организма животных и человека объясняется отсутствием способности клеток синтезировать углеродные скелеты незаменимых аминокислот, поскольку процесс ами-нирования соответствующих кетопроизводных осуществляется сравнительно легко посредством реакций трансаминирования. Следовательно, для обеспечения нормальной жизнедеятельности человека и животных все эти 10 аминокислот должны поступать с пищей.

Следует отметить, что для взрослого человека аргинин и гистидин оказались частично заменимыми. Г. Роуз наблюдал людей, получавших искусственную пищу, в которой белок был полностью заменен смесью 20 аминокислот. Он установил, что для сохранения нормальной массы тела и работоспособности имеют значение не только определенное количество каждой аминокислоты и соотношение незаменимых аминокислот в подобной диете, но и содержание в последней общего азота (табл. 12.2).

Исключение какой-либо незаменимой аминокислоты из пищевой смеси сопровождается развитием отрицательного азотистого баланса, истощением, остановкой роста, нарушениями функции нервной системы и др. В опытах на крысах были установлены следующие величины незаменимых аминокислот, необходимых для оптимального роста, относительно триптофана, принятого за единицу: лизина 5; лейцина 4; валина 3,5; фенил-аланина 3,5; метионина 3; изолейцина 2,5; треонина 2,5; гистидина 2; аргинина 1. Имеются доказательства, что примерно такое же соотношение незаменимых аминокислот требуется для человека.

 

ФУНКЦИИ БЕЛКОВ

Белки выполняют множество самых разнообразных функций, характерных для живых организмов.

 Каталитическая функция. 

Большинство известных в настоящее время ферментов, называемых биологическими катализаторами, является белками. Эта функция белков, хотя и не оказалась уникальной, определяет скорость химических реакций в биологических системах.

Транспортная функция. 

b-21

Дыхательная функция крови, в частности перенос кислорода, осуществляется молекулами гемоглобина – белка эритроцитов. В транспорте липидов принимают участие альбумины сыворотки крови. Ряд других сывороточных белков образует комплексы с жирами, медью, железом, тироксином, витамином А и другими соединениями, обеспечивая их доставку в соответствующие органы-мишени.

Защитная функция. 

C:\Users\Asus\Desktop\image006.jpg

Основную функцию защиты в организме выполняет иммунная система, которая обеспечивает синтез специфических защитных белков-антител в ответ на поступление в организм бактерий, токсинов, вирусов или чужеродных белков.

Сократительная функция. 

В акте мышечного сокращения и расслабления участвует множество белковых веществ. Однако главную роль в этих жизненно важных процессах играют актин и миозин – специфические белки мышечной ткани.

Структурная функция. 

C:\Users\Asus\Desktop\image004.jpg

Белки, выполняющие структурную (опорную) функцию, занимают по количеству первое место среди других белков тела человека. Среди них важнейшую роль играют фибриллярные белки, в частности коллаген в соединительной ткани, кератин в волосах, ногтях, коже, эластин в сосудистой стенке и др.

Гормональная функция. 

Обмен веществ в организме регулируется разнообразными механизмами. В этой регуляции важное место занимают гормоны, синтезируемые не только в железах внутренней секреции, но и во многих других клетках организма. Ряд гормонов представлен белками или полипептидами, например гормоны гипофиза, поджелудочной железы и др.

Питательная (резервная) функция. 

Эту функцию выполняют так называемые резервные белки, являющиеся источниками питания для плода, например белки яйца (овальбумины). Основной белок молока (казеин) также выполняет главным образом питательную функцию.

 КЛАССИФИКАЦИЯ БЕЛКОВ

В соответствии с функциональным принципом различают 12 главных классов белков:

каталитически активные белки (ферменты);

белки-гормоны (хотя есть и стероидные гормоны);

белки-регуляторы активности генома;

защитные белки (антитела, белки свертывающей и антисвертывающей систем крови);

токсические белки;

транспортные белки;

мембранные белки;

сократительные белки;

рецепторные белки;

белки-ингибиторы ферментов;

белки вирусной оболочки;

белки с иными функциями.

В зависимости от химического состава делят на простые и сложные белки.

Простые белки построены из остатков аминокислот и при гидролизе распадаются соответственно только на свободные аминокислоты.

Сложные белки – это двухкомпонентные белки, которые состоят из какого-либо простого белка и небелкового компонента, называемого простетической группой. При гидролизе сложных белков, помимо свободных аминокислот, освобождается небелковая часть или продукты ее распада.

Простые белки в свою очередь делятся на основании некоторых условно выбранных критериев на ряд подгрупп: протамины, гистоны, альбумины, глобулины, проламины, глютелины и др.

 Аминокислоты белков и их характеристика

В состав белков входят 20 стандартных аминокислот, т.е. аминокислоты, включение которых

в молекулу белка кодируется на генетическом уровне.

Общая формула аминокислот: (у глицина R=Н )

Все аминокислоты относятся к α – ряду, они имеют ассиметричный атом углерода

(кроме глицина) и поэтому обладают оптической активностью. Возможна рацемизация аминокислот - взаимное превращение L– и D–форм, что приводит к изменению оптической активности и накоплению D–форм аминокислот. Это явление используется в судебной медицине для определения возраста человека по количеству D–изомера аспарагиновой кислоты в дентине, где отсутствует обмен белков. Скорость рецемизации L–асп в D–асп составляет 0,1% в год (1% за десять лет, 5% за 50 лет и т.д.)

Большое значение имеет радикал (R) аминокислот, который может быть гидрофильным или гидрофобным неполярным), что обеспечивает как пространственную структуру и так и функцию белков.

КЛАССИФИКАЦИЯ АМИНОКИСЛОТ

I. По строению радикала

1.Алифатические (гли, ала, вал, лей, илей).

2.Гидроксиаминокислоты (сер, тре).

3.Дикарбоновые (асп, глу).

4.Амиды дикарбоновых кислот (асн, глн).

5.Серосодержащие (мет, цис).

6.Циклические (фен, тир, три, гис).

7.Диаминомонокарбоновые (лиз, арг).

8.Иминокислота (про).

II. По кислотно-основным свойствам

1.Нейтральные.

2.Кислые.

3.Основные.

III. По полярности

1.Неполярные (ала, вал, лей, мет, про, иле, три, фен).

2.Полярные:

а) незаряженные (сер, тре, цис, гли, тир,асн, глн);

б) заряженные:

-отрицательно заряженные (глу, асп);

-положительно заряженные (лиз, арг, гис).

Нестандартные АК в составе белков:

-g-карбоксиглутаминовая кислота (протромбин: свертывание крови);

-4-гидроксипролин, 5-гидроксилизин (белки соединительной ткани: коллаген);

-десмозин (конденсация 4-х молекул лизина: соединительная ткань);

-дийодтирозин (гормоны щитовидной железы).

Современная рациональная классификация аминокислот основана на полярности радикалов (R-групп), т.е. способности их к взаимодействию с водой при физиологических значениях рН (близких к рН 7,0). Различают 5 классов аминокислот, содержащих следующие радикалы: 1) неполярные (гидрофобные); 2) полярные (гидрофильные); 3) ароматические (большей частью неполярные); 4) отрицательно заряженные и 5) положительно заряженные. В представленной классификации аминокислот (табл. 1.3) приведены наименования, сокращенные английские и русские обозначения и однобуквенные символы аминокислот, принятые в отечественной и иностранной литературе, а также значения изоэлектрической точки (рI) имолекулярной массы (М). Отдельно даются структурные формулы всех 20 аминокислот белковой молекулы.

Классификация аминокислот, основанная на полярности радикалов

Неполярные R-группы: L-глицин, L-пролин, L-изолейцин

Полярные, незаряженные R-группы

Полярные, незаряженные R-группы: L-серин,  L-цистеин, L-глаумин, L-треонин, L-мтионин, L-аспарагин.

Отрицательно заряженные R-группы

L-глатаминовая кислота и L-аспарагиновая кислота

Положительно заряженные R-группы

Положительно заряженные R-группы: L-лизин, L-гистидин, L-аргинин.

Ароматические R-группы

Ароматические R-группы: L-фенилаланин, L-тирозин, L-триптофан.

Перечисленные аминокислоты присутствуют в разных количественных соотношениях и последовательностях в тысячах белков, хотя отдельные индивидуальные белки не содержат полного набора всех этих аминокислот. Помимо наличия в большинстве природных белков 20 аминокислот, в некоторых белках обнаружены производные аминокислот : оксипролин, оксилизин, дийодтирозин, фосфосерин и фосфотреонин (последние двеаминокислоты представлены в главе 2):

Производные аминокислот: оксилизин, оксипролин, 3,5-дийодтирозин

Первые две аминокислоты содержатся в белке соединительной ткани  коллагене, а дийодтирозин является основой структуры гормонов щитовидной железы. В мышечном белке миозине обнаружен также ε-N-метиллизин; в состав протромбина (белок свертывания крови) входит γ-карбоксиглутаминовая кислота, а в глутатионпероксидазе открыт селеноцистеин, в котором ОН-группа серина заменена на селен (Se):

дзета-N-метиллизин, гамма-карбоксиглутаминовая кислота, селеноцистеин

Помимо указанных, ряд α-аминокислот выполняет важные функции в обмене веществ, хотя и не входит в состав белков, в частности орнитин, цитруллин, гомосерин, гомоцистеин, цистеинсульфиновая кислота, диоксифенилаланин и др.

Кислотно-основные свойства. Эти свойства аминокислот определяют многие физико-химические и биологические свойства белков. На этих свойствах основаны, кроме того, почти все методы выделения иидентификации аминокислот. Аминокислоты легко растворимы в воде. Они кристаллизуются из нейтральных водных растворов в форме биполярных (амфотерных) ионов (цвиттерионов), а не в виде недиссоциированных молекул (последнюю структуру приводят для удобства представления, однако всеаминокислоты при физиологических значениях рН имеют структуру цвиттериона).

Цвиттерион

При растворении в воде кристаллическая аминокислота, например аланин, может реагировать или каккислота (донатор протона):

или как основание (акцептор протона):

Если радикалы аминокислот нейтральные, то они почти не оказывают влияния на диссоциацию α-карбоксильной группы или α-аминогруппы, и величины рК (отрицательный логарифм константыдиссоциации) остаются относительно постоянными. Вследствие этого кривые диссоциации почти всех нейтральных аминокислот накладываются друг на друга и могут быть рассмотрены на примере аланина. Если к раствору аланина (например, 0,1 М) в воде постепенно прибавлять сильную кислоту (0,1 М растворНСl) или сильную щелочь (0,1 М раствор NaOH), то получим кривую титрования аланина, типичную для всех нейтральных аминокислот (рис. 1.6).

Кажущиеся величины рК' для α-карбоксильной группы и α-аминогрупп (т.е. значения рН, при которых эти группы в среднем наполовину диссоциированы) довольно сильно различаются, составляя pK1 = 2,34 и рК2 = 9,69. При низком значении рН (ниже pK1') почти все молекулы аланина являются полностью протонированными и несут положительный заряд. Другими словами, при высокой концентрации водородныхионов в растворе тенденция к диссоциации водорода из структуры аланина оказывается незначительной. Из кривой титрования видно, что точка перехода между ветвями кривой располагается при рН 6,02. Это означает, что при данном значении рН суммарный (или средний) электрический заряд молекулы аланинаравен нулю и она не перемещается в электрическом поле ни к аноду, ни к катоду (изоэлектрическое состояние). Такое значение рН получило название изоэлектрической точки и обозначается pI.Изоэлектрическая точка аминокислот, не содержащих дополнительных NH2- или СООН-групп, представляет собой среднее арифметическое между двумя значениями рК':

соответственно для аланина

Изоэлектрическая точка ряда других аминокислот, содержащих дополнительные кислотные или основные группы (аспарагиновая и глутаминовая кислоты, лизин, аргинин, тирозин и др.), зависит, кроме того, от кислотности или основности радикалов этих аминокислот. Для лизина, например, рI должна вычисляться из полусуммы значений рК' для α- и ε-NН2-групп. Таким образом, в интервале рН от 4,0 до 9,0 почти все аминокислотысуществуют преимущественно в форме цвиттерионов с протонированной аминогруппой и диссоциированной карбоксильной группой. Следует отметить, что при физиологических значениях рН тканей и крови (7,1 и 7,4 соответственно) аминокислоты (за ислючением гистидина) не обладают измеримой буферной емкостью. Эту способность они приобретают только при значениях рН, близких к величинам их рК (т.е. при рН 1,7-3,2 и 8,6-10,8).

Кривые, полученные при титровании 0,1 М раствора аланина 0,1 М раствором НСl (а) и 0,1 М раствором NaOH (б)

Рис. Кривые, полученные при титровании 0,1 М раствора аланина 0,1 М раствором НСl (а) и 0,1 М раствором NaOH (б).

Аминокислоты (свободные и в составе белков) содержат почти 95% всего азота, поэтому именно они поддерживают азотистый баланс организма. Азотистый баланс - разница между количеством азота, поступающего с пищей, и количеством выделяемого азота (преимущественно в виде мочевины и аммонийных солей). Если количество поступающего азота равно количеству выделяемого, то наступает азотистое равновесие. Такое состояние бывает у здорового человека при нормальном питании. Азотистый баланс может быть положительным (азота поступает больше, чем выводится) у детей, а также у пациентов, выздоравливающих после тяжёлых болезней. Отрицательный азотистый баланс (выделениеазота преобладает над его поступлением) наблюдают при старении, голодании и во время тяжёлых заболеваний.

При безбелковой диете азотистый баланс становится отрицательным. Соблюдение подобной диеты в течение недели приводит к тому, что количество выделяемого азота перестаёт увеличиваться и стабилизируется примерно на величине 4 г/сут. Такое количество азота содержится в 25 г белка. Значит, при белковом голодании в сутки в организме расходуется около 25 г собственных белков тканей. Минимальное количество белков в пище, необходимое для поддержания азотистого равновесия, соответствует 30-50 г/cyt, оптимальное же количество при средней физической нагрузке составляет 100-120 г/сут.

Полноценность белкового питания

В ходе эволюции человек утратил способность синтезировать почти половину из двадцати аминокислот, входящих в состав белков. К их числу относят те аминокислоты, синтез которых включает много стадий и требует большого количества ферментов, кодируемых многими генами. Следовательно, те аминокислоты, синтез которых сложен и неэкономичен для организма, очевидно, выгоднее получать с пищей. Такие аминокислоты называют незаменимыми. К ним относят фенилаланин, метио-нин, треонин, триптофан, валин, лизин, лейцин, изолейцин.

Две аминокислоты - аргинин и гистидин - у взрослых образуются в достаточных количествах, однако детям для нормального роста организма необходимо дополнительное поступление этих аминокислот с пищей. Поэтому их называют частично заменимыми. Две другие аминокислоты - тирозин и цистеин - условно заменимые, так как для их синтеза необходимы незаменимые аминокислоты. Тирозин синтезируется из фенилаланина, а для образования цистеина необходим атом серы метионина.

Остальные аминокислоты легко синтезируются в клетках и называются заменимыми. К ним относят глицин, аспарагиновую кислоту, аспарагин, глутаминовую кислоту, глутамин, серии, пролин, аланин.

Как было показано выше, основным источником аминокислот для клеток организма являются белки пищи. В различных пищевых продуктах содержание белка колеблется в широких пределах (табл. ).

Таблица. Количество белка в некоторых пищевых продуктах

Название продукта

Содержание белка, %

Мясо

18-22

Рыба

17-20

Сыр

20-36

Молоко

3,5

Рис

8,0

Горох

26

Соя

35

Картофель

1,5-2,0

Капуста

1,1-1,6

Морковь

0,8-1,0

Яблоки

0,3-0,4

Из таблицы видно, что распространённые продукты растительного происхождения содержат мало белка (кроме гороха и сои). Наиболее богаты белками продукты животного происхождения (мясо, рыба, сыр). Белки не являются незаменимыми пищевыми факторами, они являются источниками содержащихся в них незаменимых аминокислот, необходимых для нормального питания.

Питательная ценность белка зависит от его аминокислотного состава и способности усваиваться организмом. Белки значительно различаются по аминокислотному составу. Некоторые их них содержат полный набор незаменимых аминокислот в оптимальных соотношениях, другие не содержат одной или нескольких незаменимых аминокислот. Растительные белки, особенно пшеницы и других злаковых, полностью не перевариваются, так как защищены оболочкой, состоящей из целлюлозы и других полисахаридов, которые не гидролизуются пищеварительными ферментами. Некоторые белки по аминокислотному составу близки к белкам тела человека, но не используются в качестве пищевых, так как имеют фибриллярное строение, малорастворимы и не расщепляются протеазами ЖКТ. К ним относят белки волос, шерсти, перьев и другие. Если белок содержит все незаменимые аминокислоты в необходимых пропорциях и легко подвергается действию протеаз, то биологическая ценность такого белка условно принимается за 100, и он считается полноценным. К таким относят белки яиц и молока. Белки мяса говядины имеют биологическую ценность 98. Растительные белки по биологической ценности уступают животным, так как труднее перевариваются и бедны лизином, метионином и триптофаном. Однако при определённой комбинации растительных белков организм можно обеспечить полной и сбалансированной смесью аминокислот. Так, белки кукурузы (биологическая ценность - 36) содержат мало лизина, но достаточное количество триптофана. А белки бобов богаты лизином, но содержат мало триптофана. Каждый из этих белков в отдельности является неполноценным. Однако смесь бобов и кукурузы содержит необходимое человеку количество незаменимых аминокислот.

Нормы белка в питании

Для поддержания азотистого равновесия достаточно употреблять 30-50 г белков в сутки. Однако такое количество не обеспечивает сохранения работоспособности и здоровья человека. Принятые нормы белкового питания для взрослых и детей учитывают климатические условия, профессию, условия труда и другие факторы. Взрослый человек при средней физической нагрузке должен получать 100-120 г белков в сутки. При тяжёлой физической работе эта норма увеличивается до 130-150 г. Детям до 12 лет достаточно 50-70 г белков в сутки. При этом подразумевается, что в пишу входят разнообразные белки животного и растительного происхождения.

Белковая недостаточность

Известно, что даже длительное исключение из рациона человека жиров или углеводов не вызывает тяжёлых расстройств здоровья. Однако безбелковое питание (особенно продолжительное) вызывает серьёзные нарушения обмена и неизбежно заканчивается гибелью организма. Исключение даже одной незаменимой аминокислоты из пищевого рациона ведёт к неполному усвоению других аминокислот и сопровождается развитием отрицательного азотистого баланса, истощением, остановкой роста и нарушениями функций нервной системы.

Конкретные проявления недостаточности одной из аминокислот были выявлены у крыс, которым скармливали белки, лишённые определённой аминокислоты. Так, при отсутствии цистеина (или цистина) возникал острый некроз печени, гистидина - катаракта; отсутствие метионина приводило к анемии, ожирению и циррозу печени, облысению и геморрагии в почках. Исключение лизина из рациона молодых крыс сопровождалось анемией и внезапной гибелью (этот синдром отсутствовал у взрослых животных).

Недостаточность белкового питания приводит к заболеванию, получившему в Центральной Африке название "квашиоркор", что в переводе означает "золотой (или красный) мальчик". В настоящее время это название часто используют и в других частях света при сходных симптомах. Заболевание развивается у детей, которые лишены молока и других животных белков, а питаются исключительно растительной пищей, включающей бананы, таро, просо и, чаще всего, кукурузу. Квашиоркор характеризуется задержкой роста, анемией, гипопротеинемией (часто сопровождающейся отёками), жировым перерождением печени. У лиц негроидной расы волосы приобретают красно-коричневый оттенок. Часто это заболевание сопровождается атрофией клеток поджелудочной железы. В результате нарушается секреция панкреатических ферментов и не усваивается даже то небольшое количество белков, которое поступает с пищей. Происходит поражение почек, вследствие чего резко увеличивается экскреция свободных аминокислот с мочой. Без лечения смертность детей составляет 50-90%. Даже если дети выживают, длительная недостаточность белка приводит к необратимым нарушениям не только физиологических функций, но и умственных способностей. Заболевание исчезает при своевременном переводе больного на богатую белком диету, включающую большие количества мясных и молочных продуктов. Один из путей решения проблемы - добавление в пищу препаратов лизина.

Физико-химические свойства белков

 Растворы белка относятся к растворам ВМС и обладают рядом свойств гидрофильных коллоидов: медленной диффузией, высокой вязкостью, опаслеценцией, дают конус Тиндаля.

 1)      Амфотерность связана с наличием в молекуле белка катионообразующих групп – аминогрупп и анионообразующих – карбоксильных группу. Знак заряда молекулы зависит от количества свободных групп. Если преоблазают карбоксильные группы то заряд молекулы отрицательный (проявляются свойства слабой кислоты), если аминогруппы – то положительный (основные свойства).

Заряд белка также зависит от рН среды. В кислой среде молекула приобретает  положительный заряд, в щелочной – отрицательный.

 

[ NH3+ - R – COO- ] 0

pH > 7 [ OH- ]                               7 >  pH [ H+ ]

[ NH2 - R – COO- ]-                                                [ NH3+ - R – COOH]+

 

 Значение рН при котором число разноименных зарядов в белковой молекуле одинаково, т. е. суммарный заряд равен нулю называется изоэлектрической точкой данного белка. Устойчивость белковой молекулы к воздействию физических и химических факторов в изоэлектрической точке наименьшая.

Большинство природных белков содержат значительное количество дикарбоновых аминокислот и поэтому относятся к кислым белкам. Их изоэлектрическая точка лежит в слабокислой среде.

 2)      Растворы белков обладают буферными свойствами за счет их амфотерности.

 3)      Растворимость. Поскольку молекула белка содержит полярные амино – и карбоксильные группы, то в растворе поверхностные остатки АК гидратируются – происходит образованиекоацервата.

 4)      Коацервация - слияние водных оболочек нескольких частиц, без объединения самих частиц.

 5)      Коагуляция – склеивание белковых частиц и выпадение их в осадок. Это происходит при удалении  их гидратной оболочки. Для этого достаточно изменить структуру  частицы белка, так, чтобы ее гидрофильные группы, которые связывают воду растворителя, оказались внутри частицы. Реакции осаждения балка в растворе делятся на две группы: обратимые (высаливание) и необратимые (денатурация).

 6)      Денатурацией называется существенное изменение вторичной и третичной структуры белка, т. е. Нарушение системы нековалентных взаимодействий, не затрагивающее его ковалентной (первичной) структуры. Денатурированный белок лишен всякой биологической активности в клетке и в основном используется как источник аминокислот. Денатурирующими агентами могут быть химические факторы: кислоты, щелочи, легко гидратирующие соли, органические растворители, различные окислители. К физическим факторам могут быть отнесены: действие высокого давления, многократное замораживание и оттаивание, ультразвуковые волны, УФ-лучи, ионизирующая радиация. Но наиболее распространенным физическим фактором денатурации белка является повышение температуры.

 В ряде случаев денатурированный белок в клетке может быть подвергнут ренатурации, т. е. свернут обратно в первоначальную пространственную структуру. Этот процесс происходит при участии специфических белков, так называемых белков теплового шока (heat shock proteins или  hsp) молекулярной массой 70 кДа. Данные белки синтезируются в клетках в большом количестве  при воздействии на нее (или весь организм) неблагоприятных факторов, в частности повышенной температуры. Присоединяясь к развернутой полипептидной цепи hsp 70 быстро сворачивают ее в правильную первоначальную структуру.

 

МЕТОДЫ ВЫДЕЛЕНИЯ И ОЧИСТКИ БЕЛКОВ

Препараты высокоочищенных белков находят разнообразное применение в научных исследованиях, медицине и биотехнологии. Так как многиебелки, и в особенности глобулярные, высоколабильны , выделение проводят с помощью предельно мягких методов и при пониженнойтемпературе (0-5°С). К таким методам относится ионообменная хроматография. Другие методы выделения белковпредставлены в этом разделе.

A. Высаливание

Растворимость белков сильно зависит от концентрации солей (от ионной силы). В дистиллированной воде белки чаще всего растворяются плохо, однако их растворимость возрастает по мере увеличения ионной силы. При этом все большее количество гидратированных неорганических ионов(светло-синие кружочки) связывается с поверхностью белка и тем самым уменьшается степень его агрегации (засаливание). При высокой ионной силе молекулы белков лишаются гидратирующих оболочек, что приводит к агрегации и выпадению белка в осадок (высаливание). Используя различие в растворимости, можно с помощью обычных солей, например (NН4)24, разделить (фракционировать) смесь белков.

Б. Диализ

Для отделения низкомолекулярных примесей или замены состава среды используют диализ. Метод основан на том, что молекулы белка из-за своих размеров не могут проходить через полупроницаемые мембраны, в то время как низкомолекулярные вещества равномерно распределяются между объемом, ограниченным мембраной, и окружающим раствором. После многократной замены внешнего раствора состав среды в диализном мешочке (концентрация солей, величина pH и др.) будет тот же, что и в окружающем растворе.

B. Гель-фильтрация

Гель-проникающая хроматография (гель-фильтрация) позволяет разделять белки по величине и форме молекул. Разделение проводят в хроматографических колонках, заполненных сферическими частицами набухшего геля (размером 10-500 мкм) из полимерных материалов (1а). Частицы геля проницаемы благодаря внутренним каналам, которые характеризуются определенным средним диаметром. Смесь белков (1б) вносят в колонку с гелем и элюируют буферным раствором. Белковые молекулы, не способные проникать в гранулы геля (помечены красным цветом), будут перемещаться с высокой скоростью. Средние (зеленого цвета) и небольшие белки (синего цвета) будут в той или иной степени удерживаться гранулами геля (1в). На выходе колонки элюат собирают в виде отдельных фракций (2). Объем выхода того или иного белка зависит в основном от его молекулярной массы (3).

Г. Электрофорез в полиакриламидном геле в присутствии додецилсульфата натрия

В настоящее время электрофорез в полиакриламидном геле (ПААГ) в присутствии додецилсульфата натрия (ДСН) [ДСН-ПААГ-электрофорез (SDS-PAGE)] является общепринятым методом определения гомогенности белковых препаратов. Метод основан на свойстве заряженных частиц (молекул) перемещаться под действием электрического поля (см. с. 270). Обычно скорость миграции зависит от трех параметров анализируемыхбелков: величины молекул, формы молекул и суммарного заряда. Поэтому предварительно белки денатурируют с тем, чтобы скорость миграции зависела только от молекулярной массы. Для этого анализируемую смесь обрабатывают додецилсульфа-том натрия [ДСН (SDS)] (C12H25OSO3Na), который представляет собой детергент с сильно выраженными амфифильными свойствами (см. с. 34). Под действием ДСН олигомерные белкидиссоциируют на субъединицы и денатурируют. Развернутые полипептидные цепи связывают ДСН (примерно 0,4 г/г белка) и приобретают отрицательный заряд. Для полной денатурации в среду добавляют тиолы, которые расщепляют дисульфидные мостики (1).

Электрофорез проводят в тонком слое полиакриламида (2). После завершения электрофореза, зоны белков выявляют c помощью красителя, В качестве примера на схеме 3 приведена электрофореграмма трех препаратов: клеточного экстракта, содержащего сотни белков (а); выделенного из экстракта гомогенного белка (б); контрольной смеси белков с известными молекулярными массами (в).

Для подробного исследования физико-химических и биологических свойств белков, а также для изучения их химического состава и структуры непременным условием является получение белков из природных источников в химически чистом, гомогенном состоянии.

Белковые вещества весьма чувствительны к повышению температуры и действию многих химических реагентов (органические растворители, кислоты, щелочи). Поэтому обычные методы органической химии, применяемые для выделения того или иного вещества из смеси (нагревание, перегонка, возгонка, кристаллизация и др.), в данном случае неприемлемы. Белки в этих условиях подвергаются денатурации, т.е. теряют некоторые существенные природные (нативные) свойства, в частности растворимость, биологическую активность. Разработаны эффективные методы выделения белков в «мягких» условиях, при низкой температуре (не выше 4°С), с применением щадящих нативную структуру химических реагентов.

Разделение белков по молекулярной массе

Гель-хроматография

Хроматографическую колонку заполняют гранулами геля (сефадекс), который имеет поры определенной величины. В колонку вносят смесь белков. Белки, размер которых меньше, чем размер пор сефадекса, задерживаются в колонке, так как «застревают» в порах, а остальные свободно выходят из колонки. Размер белка зависит от его молекулярной массы.

 

Ультрацентрифугирование

Этот метод основан на различной скорости седиментации (осаждения) белковых молекул в растворах с различным градиентом плотности (сахарозный буфер или хлорид цезия).

 

Фракционирование и очистка белков

Для фракционирования белков применяют разнообразные методы: высаливание, тепловую денатурацию, осаждение органическими растворителями, хроматографию, электрофорез, распределение в двухфазных системах, кристаллизацию и др.

Растворение белков в воде связано с гидратацией каждой молекулы, что приводит к образованию вокруг белковой глобулы водных (гидратных) оболочек, состоящих из ориентированных в определенной форме в пространстве молекул воды. Растворы белков отличаются крайней неустойчивостью, и под действием разнообразных факторов, нарушающих гидратацию, белки легко выпадают в осадок. Поэтому при добавлении к раствору белка любых водоотнимающих средств (спирт, ацетон, концентрированные растворы нейтральных солей щелочных металлов), а также под влиянием физических факторов (нагревание, облучение и др.) наблюдаются дегидратация молекул белка и их выпадение в осадок.

Высаливание. При добавлении растворов солей щелочных и щелочноземельных металлов происходит осаждение белков из раствора. Обычно белок не теряет способности растворяться вновь в воде после удаления солей методами диализа или гельхроматографии. Высаливанием белков обычно пользуются в клинической практике при анализе белков сыворотки крови и других биологических жидкостей. Различные белки высаливаются из растворов при разных концентрациях нейтральных растворов сульфата аммония. Поэтому метод нашел широкое применение в клинике для разделения глобулинов (выпадают в осадок при 50% насыщении) и альбуминов (выпадают при 100% насыщении).

В последнее время наибольшее распространение получили хроматографические и электрофоретические методы разделения белков.

Хроматография. Принцип хроматографии, разработанный в 1903 г. русским ученым М. С. Цветом, основан на способности пигментов (или любых других окрашенных и неокрашенных веществ) специфически адсорбироваться на адсорбенте, заключенном в колонке.

В результате происходит разделение анализируемых веществ и их концентрирование в строго определенном слое адсорбента. Затем через колонку пропускают подходящие элюенты, которые ослабляют силы адсорбции и выносят с током раствора индивидуальные вещества. Последние последовательно собирают в коллекторе фракций (принцип сорбции-десорбции).

При выделении и очистке белков используют четыре основных типа хроматографии: адсорбционную, распределительную, ионообменную и аффинную (хроматография по сродству) – в соответствии с разными физическими и химическими механизмами, лежащими в основе каждого из них.

Адсорбционная хроматография. Разделение компонентов смеси (образца) основано на их различной сорбируемости на твердом адсорбенте. В качестве адсорбентов используют активированный древесный уголь, гель фосфата кальция, оксиды алюминия или кремния. Адсорбент в виде суспензии с растворителем (чаще всего буферным раствором) вносят в стеклянную вертикальную трубку (колонку) и равномерно в ней упаковывают. Образец в небольшом объеме растворителя наносят на колонку –

Рис. 1.3. Абсорбционнаяхроматография (схема). Разделение двух разных веществ (А и В), перемещающихся по колонке с разной скоростью.

1 - нанесение образца на колонку; 2 -середина опыта; 3 - окончание опыта.

компоненты разделяемой смеси адсорбируются на адсорбенте. Затем приступают к стадии освобождения – десорбции компонентов из колонки, применяя подходящие элюенты (рис. 1.3). Сбор фракций осуществляют при помощи автоматического коллектора фракций.

Распределительная хроматография. В отличие от адсорбционной твердая фаза служит только опорой (основой) для стационарной жидкой фазы.

Разновидностью распределительной хроматографии является хроматография на бумаге, широко используемая в биохимических лабораториях, в том числе клинических, для разделения пептидов, аминокислот и других веществ (рис. 1.4). В качестве стационарной фазы при этом служит вода, адсорбированная целлюлозными цепями фильтровальной бумаги. Образец помещают на одном конце бумажной полосы, этим же концом бумагу погружают в подходящую смесь органических растворителей (например, бутанол–уксусная кислота–вода в определенных соотношениях). При движении растворителя по бумаге благодаря силе капиллярности происходит разделение компонентов смеси. Проявленную хроматограмму высушивают, а местоположение каждого из разделяемых веществ определяют химическими или физико-химическими методами.

Рис. 1.4. Хроматография на бумаге (схема).

А – восходящая хроматография; Б – нисходящая хроматография (вид сбоку); В – хроматограмма с разделенными и окрашенными веществами: 1 – фронт растворителя, 2 – разделенные вещества, 3 – место нанесения образца.

Электрофорез

Данный метод основан на различной скорости миграции белков и пептидов в электрическом поле в зависимости от заряда.

Носителями для электрофореза могут служить гели, ацетатцеллюлоза, агар.

Разделяемые молекулы движутся в геле в зависимости от размера: те из них, которые имеют большие размеры, будут задерживаться при прохождении через поры геля. Меньшие молекулы будут встречать меньшее сопротивление и, соответственно, двигаться быстрее. В результате, после проведения электрофореза, большие молекулы будут находиться ближе к старту, чем меньшие.

 

 

Очистка белков от низкомолекулярных примесей

Применение в определенной последовательности ряда перечисленных методов позволяет получить белок в очищенном состоянии, не лишенный, однако, некоторых примесей солей. Для полного освобождения белков от низкомолекулярных примесей в настоящее время используют методы диализа, гельхроматографии, кристаллизации, ультрафильтрации. При диализе применяют полупроницаемые мембраны (целлофан, коллодийная пленка). Белки, как правило, не диффундируют через такую мембрану, в то время как низкомолекулярные вещества легко проникают через нее в окружающую среду.

ФИЗИКО-ХИМИЧЕСКИЕ СВОЙСТВА БЕЛКОВ

Наиболее характерными физико-химическими свойствами белков являются высокая вязкость растворов, незначительная диффузия, способность к набуханию в больших пределах, оптическая активность, подвижность в электрическом поле, низкое осмотическое давление и высокое онкотическое давление, способность к поглощению УФ-лучей при 280.

Белки, как и аминокислоты, амфотерны благодаря наличию свободных NH2- и СООН-групп. Для них характерны все свойства кислот и оснований. В зависимости от реакции среды и соотношения кислых и основных аминокислот белки в растворе несут или отрицательный, или положительный заряд, перемещаясь к аноду или катоду. Это свойство используется при очистке белков методом электрофореза.

Белки обладают явно выраженными гидрофильными свойствами. Растворы белков имеют очень низкое осмотическое давление, высокую вязкость и незначительную способность к диффузии. Белки способны к набуханию в очень больших пределах. Молекулы белка не способны проникать через полупроницаемые искусственные мембраны (целлофан, пергамент, коллодий), а также биомембраны растительных и животных тканей.

Молекулярная масса белков

Белки относятся к высокомолекулярным соединениям, в состав которых входят сотни и даже тысячи аминокислотных остатков, объединенных в макромолекулярную структуру. Молекулярная масса белков колеблется от 6000 (нижний предел) до 1000000 и выше в зависимости от количества отдельных полипептидных цепей в составе единой молекулярной структуры белка.

Аминокислотный состав и последовательность аминокислот выяснены для многих тысяч белков. В связи с этим стало возможным вычисление их молекулярной массы химическим путем с высокой точностью. Однако для огромного количества встречающихся в природе белков химическое строение не выяснено, поэтому основными методами определения молекулярной массы все еще остаются физико-химические методы (гравиметрические, осмометрические, вискозиметрические, электрофоретические, оптические и др.).

Денатурация белков

Природные белковые тела наделены определенной, строго заданной пространственной конфигурацией и обладают рядом характерных физико-химических и биологических свойств при физиологических значениях температуры и рН среды. Под влиянием различных физических и химических факторов белки подвергаются свертыванию и выпадают в осадок, теряя нативные свойства.

Денатурация  - это нарушение общего плана уникальной структуры нативной молекулы белка, преимущественно ее третичной структуры, приводящее к потере характерных для нее свойств (растворимость, электрофоретическая подвижность, биологическая активность и т.д.). Большинство белков денатурирует при нагревании их растворов выше 50–60°С.

При непродолжительном действии и быстром удалении денатурирующих агентов возможна ренатурация белка с полным восстановлением исходной трехмерной структуры и нативных свойств его молекулы. Таким образом, при денатурации белковая молекула полностью теряет биологические свойства, демонстрируя тем самым тесную связь между структурой и функцией.

Факторы денатурации:

1.     температура

2.     изменение нормального для белка значения рН

3.     высокие     концентрации      солей,      которые      нарушают     электростатические
взаимодействия и водородные связи

4.     соли тяжёлых металлов, которые образуют с белками стойкие нерастворимые
комплексы

5.     мочевина и  гуанидин,  который действует на гидрофобные  взаимодействия и
водородные связи

6.     сульфидные   связи   (13-меркаптоэтанол)   или   надмуравьиная   кислота,   которые
разрушают дисульфидные связи.

Денатурация может быть обратимой и необратимой. Находящиеся на поверхности аминокислотные остатки способны образовывать разнообразные связи с другими веществами, которые называют лигандами. Как правило, белковые молекулы имеют специфические центры связи, имеющие вид углубления. Существуют определённые принципы взаимодействия белков с лигандами:

1. соседние остатки ППЦ могут взаимодействовать таким образом, что доступ воды к другим участкам поверхности белка может быть ограничен, в этом случае удаётся достигнуть более прочных водородных связей и ионных взаимодействий между белком и лигандом,

1.     образование комплекса из соседних полярных аминокислот изменяет реакционную
способность боковых группировок, что может привести к активированию обычно
неактивных функциональных группировок,

2.     значительную роль во взаимодействиях белков с другими молекулами играют
гидрофобные остатки аминокислот.

Помимо активного центра у белков имеются определённые участки, которые способны регулировать активность связывания, взаимодействие белка с другими веществами — такие участки называются аллостерическими. Аллостерические центры характерны для многих ферментов и играют роль в их активности.

СТРУКТУРНАЯ ОРГАНИЗАЦИЯ БЕЛКОВ

Белковые молекулы представляют собой продукт полимеризации 20 различных мономерных молекул (аминокислот), соединенных не хаотично, а в строгом соответствии с кодом белкового синтеза.

Белки представляют собой сложные полипептиды, в которых отдельные аминокислоты связаны друг с другом пептидными связями, возникающими при взаимодействии α-карбоксильных СООН- и α-NН2-групп аминокислот.

 

Аналогичным способом к дипептиду могут присоединяться и другие аминокислоты с образованием три-, тетра-, пентапептида и т.д. вплоть до крупной молекулы полипептид (белка). Наименование пептидов складывается из названия первой N-концевой аминокислоты со свободной NH2-группой (с окончанием -ил, типичным для ацилов), названий последующих аминокислот (также с окончаниями -ил) и полного названия С-концевой аминокислоты со свободной СООН-группой. Например, пентапептид из 5 аминокислот может быть обозначен полным наименованием: глицил-аланил-серил-цистеинил-аланин, или сокращенно Гли–Ала–Сер–Цис–Ала.

Первичная структура белка


К настоящему времени расшифрована первичная структура десятков тысяч разных белков, что является несомненным достижением биохимии. Под первичной структурой подразумевают порядок, последовательность расположения аминокислотных остатков в полипептидной цепи. Для определения первичной структуры отдельной, химически гомогенной полипептидной цепи в первую очередь методами гидролиза выясняют аминокислотный состав, точнее, соотношение каждой из 20 аминокислот в образце гомогенного полипептида. Затем приступают к определению химической природы концевых аминокислот полипептидной цепи, содержащей одну свободную NH2-группу и одну свободную СООН-группу.

Вторичная структура белка

Под вторичной структурой белка подразумевают конфигурацию полипептидной цепи, т. е. способ свертывания, скручивания (складывание, упаковка) полипептидной цепи в спиральную или какую-либо другую конформацию.Есть два вида вторичной структуры: α-спираль и β-структура.

Наиболее вероятным типом строения глобулярных белков принято считать α-спираль. Закручивание полипептидной цепи происходит по часовой стрелке. Движущей силой в возникновении α-спиралей (так же как и β-структур) является способность аминокислот к образованию водородных связей. На каждый виток (шаг) спирали приходится 3,6 аминокислотных остатка. Шаг спирали (расстояние вдоль оси) равен 0,54 нм на виток, а на один аминокислотный остаток приходится 0,15 нм.

Стабильность вторичной структуры обеспечивается в основном водородными связями (определенный вклад вносят и главновалентные связи – пептидные и дисульфидные).

Другой тип конфигурации полипептидных цепей, обнаруженный в белках волос, шелка, мышц и в других фибриллярных белках, получил названиеβ-структуры. В этом случае две или более линейные полипептидные цепи, расположенные параллельно или, чаще, антипараллельно, прочно связываются межцепочечными водородными связями между NH-и СО-группами соседних цепей, образуя структуру типа складчатого слоя .

Вторичная структура

 β-Структура полипептидных цепей.

Третичная структура белка

Под третичной структурой белка подразумевают пространственную ориентацию полипептидной спирали или способ укладки полипептидной цепи в определенном объеме.

В настоящее время получены бесспорные доказательства, что в стабилизации пространственной структуры белков, помимо ковалентных связей (пептидные и дисульфидные связи), основную роль играют так называемые нековалентные связи. К этим связям относятся водородные связи, электростатические взаимодействия заряженных групп, межмолекулярные ван-дер-ваальсовы силы, взаимодействия неполярных боковых радикалов аминокислот, так называемые гидрофобные взаимодействия и т.д.

Третичная структура

По современным представлениям, третичная структура белка после завершения его синтеза в рибосомах формируется совершенно автоматически, самопроизвольно и полностью предопределяется первичной структурой. Основной движущей силой в возникновении трехмерной структуры является взаимодействие радикалов аминокислот с молекулами воды.

Обусловлена взаимодействием аминокислотных остатков, далеко отстоящих друг от друга в линейной последовательности. Факторы поддержания:

1.     водородные связи

2.     гидрофобные взаимодействия (нужны для структуры и биологических функций
белка)

3.     дисульфидные и солевые мостики

4.     ионные и ван-дер-ваальсовы связи.

В большинстве белков на поверхности молекул находятся остатки аминокислотных радикалов, обладающих гидрофильными свойствами. УВ – радикалы, которые являются гидрофобными расположены внутри молекул. Такое распределение имеет важное значение в формировании нативной структуры и свойств белка.

В результате белки имеют гидрарную оболочку, а стабилизация третичной структуры во многом обусловлена гидрофобными взаимодействиями. Например, 25-30% аминокислотных остатков в молекулах глобулина имеют выраженные гидрофобные радикалы, 45-50% содержат ионные и полярные радикальные группы.

Боковые цепи аминокислотных остатков, которые отвечают за структуру белков различают по размеру, форме, заряду и способности образовывать водородные связи, также по химической реактивности:

1.     алифатические боковые цепи, например, у валина, аланина. Именно эти остатки
формируют гидрофобные взаимодействия.

2.     гидроксилированные   алифатические   (серии,   треонин).   Эти   аминокислотные
остатки принимают участие в формировании водородных связей, а также сложных
эфиров, например, с серной кислотой.

3.     ароматические – это остатки фенилаланина, тирозина, триптофана.

4.     аминокислотные остатки с основными свойствами (лизин, аргинин, гистидин).
Преобладание в полипептидной цепи таких аминокислот придает белкам основные
свойства.

5.     остатки,  обладающие  кислотными свойствами (аспарагиновая  и  глутаминовая
кислоты)

6.     амидные (аспарагин, глутамин)

7.     содержащие серу (метионин, цистеин)

Белки, содержащие несколько полипептидных цепей, обладают четвертичной структурой. Здесь подразумевается способ укладки цепей относительно друг друга. Такие ферменты называют субъединицами. В настоящее время принято использовать термин «домен», которым обозначают компактную глобулярную единицу белковой молекулы. Многие белки состоят из нескольких таких единиц с массой от 10 до 20кДа. В белках большой молекулярной массы отдельные домены соединяются относительно гибкими участками ППЦ. В организме животных и человека присутствуют ещё более сложные структурные организации белков, примером которых могут быть мультиферментные системы, в частности пируватдекарбоксилазный комплекс.

 

Четвертичная структура белка

Под четвертичной структурой подразумевают способ укладки в пространстве отдельных полипептидных цепей, обладающих одинаковой (или разной) первичной, вторичной или третичной структурой, и формирование единого в структурном и функциональном отношениях макромолекулярного образования.Многие функциональные белки состоят из нескольких полипептидных цепей, соединенных нековалентными связями. (аналогичными тем, которые обеспечивают стабильность третичной структуры).

Четвертичная структура

К настоящему времени субъединичная структура обнаружена у нескольких сотен белков. Основными силами, стабилизирующими четвертичную структуру, являются нековалентные связи между контактными площадками протомеров, которые взаимодействуют друг с другом по типу комплементарности – универсальному принципу, свойственному живой природе.

Классификация белков

По растворимости:  водорастворимые, солерстворимые, спирторастворимые, нерастворимые и пр.

По конформационной структуре: фибриллярные, глобулярные.

По химическому строению: протеины – состоят только из аминокислот, протеиды – помимо АК имеют в составе небелковую часть (углеводы, липиды, металлы, нуклеиновые кислоты)

 

Протеины:

1)                       Альбумины – растворимы в воде, не растворимы в конц. растворах солей. рI= 4.6-4.7. Существуют альбумины молока, яиц, сыворотки крови.

2)                       Глобулины – не растворимы в воде, растворимы в солевых растворах. Имунноглобулины.

3)                       Гистоны – растворимы в воде, в слабоконцентрированных кислотах. Обладают выраженными основными свойствами. Это ядерные белки, они связаны с ДНК и РНК.

4)                       Склеропротеины – белки опорных тканей (хрящей, костей), шерсти, волос. Не растворимы в воде, слабых кислотах и щелочах.

а) коллагены – фибрилярные белки соединительной ткани. При длительном кипячении они растворяются в воде и при застудневании образуется желатин.

б) эластины – белки связок и сухожилий. По свойствам похожи на коллагены, но подвергаются гидролизу под действием ферментов пищеварительного сока;

в) кератин – входит в состав волос, перьев, копыт;

г) фиброин – белок шелка, в совем составе содержит много серина;

д) проламины и глютенины – белки растительного происхождения.

 

Протеиды

Помимо АК содержат простетическую группу и в зависимости от ее химической природы они классифицируются на:

1)                       Нуклеопротеиды – простетическая група – нуклеиновые кислоты. Среди многочисленных классов нуклеопротеидов наиболее изученными являются рибосомы, состоящие из нескольких молекул РНК и рибосомных белков, и хроматин – основной нуклеопротеид эукариотических клеток, состоящий из ДНК и структурообразующих белков – гистонов (содержатся в клеточном ядре и митохондриях) (подробнее см. главы "Нуклеиновые кислоты" и "Матричный биосинтез").

2)                       Гемопротеиды - небелковый компонент этих протеидов – гем, построен из четырех пиррольных колец, с ними связан ион двухвалентного железа (через атомы азота). К таким белка относятся: гемоглобин, миоглобин, цитохромы. Этот класс белков еще называют хромопротеиды, поскольку гем является окрашенным соединением. Гемоглобин – транспорт кислорода. Миоглобин – запасание кислорода в мышцах. Цитохромы (ферменты) – катализ окислительно-восстановаительных реакций и электронный транспорт в дыхательной цепи. .

3)                       Металлопротеиды – в состав простетической группы входят металлы. Хлорофилл – содержит гем, но вместо железа – магний. Цитохром а – содержит медь, сукцинатдегидрогеназа и др. ферменты содержат негеминовое железо (ферродоксин).

4)                       Липопротеиды – содержат липиды, входят в состав клеточных мембран

5)                       Фосфопротеиды – содержат остаток фосфорной кислоты

6)                       Глюкопротеиды – содержат сахара

 

 

 

 

ХИМИЯ ПРОСТЫХ БЕЛКОВ

Протамины и гистоны. Данная группа белков отличается рядом характерных физико-химических свойств, своеобразием аминокислотного состава и представлена в основном белками с небольшой молекулярной массой. Протамины обладают выраженными основными свойствами, обусловленными наличием в их составе от 60 до 85% аргинина. Они составляют белковый компонент в структуре ряда сложных белков.

Гистоны также являются белками основного характера. В их состав входят лизин и аргинин, содержание которых, однако, не превышает 20–30%. Молекулярная масса гистонов намного больше нижнего предела молекулярной массы белков. Эти белки сосредоточены в основном в ядрах клеток в составе дезоксирибонуклеопротеинов и играют важную роль в регуляции экспрессии генов.

Проламины и глютелины. Это белки растительного происхождения, отличаются своеобразием аминокислотного состава и физико-химических свойств. Они содержатся в основном в семенах злаков (пшеница, рожь, ячмень и др.), составляя основную массу клейковины. Характерной особенностью проламинов является растворимость в 60–80% водном растворе этанола, в то время как все остальные простые белки в этих условиях обычно выпадают в осадок.

Альбумины и глобулины. Эти белки относятся к белкам, широко распространенным в органах и тканях животных. Наиболее богаты ими белки сыворотки крови, молока, яичный белок, мышцы и др. В плазме крови человека в норме содержится около 7% белков, представленных преимущественно альбуминами и глобулинами. Альбумины и глобулины – это глобулярные белки, различающиеся по растворимости.

Различную растворимость альбуминов и глобулинов сыворотки крови раньше широко использовали в клинической практике для их фракционирования и количественного определения.

ХИМИЯ СЛОЖНЫХ БЕЛКОВ

Сложные белки, как было отмечено, содержат два компонента – простой белок и небелковое вещество. Последнее называют простетической группой (от греч. prostheto – присоединяю). Простетические группы, как правило, прочно связаны с белковой молекулой.

ХРОМОПРОТЕИНЫ

Хромопротеины (от греч. chroma – краска) состоят из простого белка и связанного с ним окрашенного небелкового компонента. Различают гемопротеины (содержат в качестве простетической группы железо), магнийпорфирины и флавопротеины (содержат производные изоаллоксазина). Хромопротеины наделены рядом уникальных биологических функций: они участвуют в таких фундаментальных процессах жизнедеятельности, как фотосинтез, дыхание клеток и целостного организма, транспорт кислорода и диоксида углерода, окислительно-восстановительные реакции, свето-и цветовосприятие и др.

НУКЛЕОПРОТЕИНЫ

Нуклеопротеины состоят из белков и нуклеиновых кислот. Последние рассматриваются как простетические группы. В природе обнаружено 2 типа нуклеопротеинов, отличающихся друг от друга по составу, размерам и физико-химическим свойствам,– дезоксирибонуклеопротеины (ДНП) и рибонуклеопротеины (РНП). Названия нуклеопротеинов отражают только природу углеводного компонента (пентозы), входящего в состав нуклеиновых кислот. У РНП углевод представлен рибозой, у ДНП – дезоксирибозой. Термин «нуклеопротеины» связан с названием ядра клетки, однако ДНП и РНП содержатся и в других субклеточных структурах.

ЛИПОПРОТЕИНЫ

Этот класс сложных белков состоит из белка и простетической группы, представленной каким-либо липидом. В частности, в составе липопротеинов открыты нейтральные жиры, свободные жирные кислоты, фосфолипиды, холестериды. Липопротеины широко распространены в природе: в растениях, тканях животных и у микроорганизмов – и выполняют разнообразные биологические функции. Они входят в состав клеточной мембраны и внутриклеточных биомембран ядра, митохондрий, микросом (структурированные липопро-теины), а также присутствуют в свободном состоянии (главным образом в плазме крови). К липопротеинам относятся, кроме того, тромбопластический белок ткани легких, липовителлин желтка куриного яйца, некоторые фосфолипиды молока и т.д. Установлено, что липопротеины участвуют в структурной, комплексной организации миелиновых оболочек, нервной ткани, хлоропластов, фоторецепторной и электронно-транспортной систем, палочек и колбочек сетчатки и др.

ФОСФОПРОТЕИНЫ

К белкам этого класса относятся казеиноген молока, в котором содержание фосфорной кислоты достигает 1%; вителлин, вителлинин и фосвитин, выделенные из желтка куриного яйца; овальбумин, открытый в белке куриного яйца; ихтулин, содержащийся в икре рыб, и др. Большое количество фосфопротеинов содержится в клетках ЦНС. Фосфопротеины занимают особое положение в биохимии фосфорсодержащих соединений не только в результате своеобразия структурной организации, но и вследствие широкого диапазона функций в метаболизме. Характерной особенностью структуры фосфопротеинов является то, что фосфорная кислота оказывается связанной сложноэфирной связью с белковой молекулой через гидроксильные группыβ-оксиаминокислот, главным образом серина и в меньшей степени треонина. На одну молекулу белка обычно приходится 2–4 остатка фосфата.

ГЛИКОПРОТЕИНЫ

Гликопротеины – сложные белки, содержащие, помимо простого белка или пептида, группу гетероолигосахаридов. В настоящее время их принято называть гликоконъюгатами. В состав гликоконъюгата входит углеводный компонент (гликановая фракция), ковалентно связанный с неуглеводной частью (агликановая фракция), представленной белком, пептидом, аминокислотой или липидом.

Классификация белков.

По химическому составу белки делятся на 2 класса – простые (при гидролизе распадаются только на аминокислоты), сложные (при гидролизе дают не только аминокислоты, но и другие структуры – простетические группы). Простые белки по растворимости и пространственному строению разделяют на глобулярные и фибриллярные. Глобулярные имеют шарообразную форму молекулы, растворимы в воде и солевых растворах. К этой группе относятся все ферменты и большинство других БАБ, исключая структурные. Среди глобулярных белков можно выделить альбумины, глобулины, протамины и гистоны. Фибриллярные белки характеризуются волокнистой структурой, делятся на растворимые и нерастворимые. К первой подгруппе относятся миозин, актин, фибриноген, ко второй – склеропротеины (протеноиды – кератины, эластины, коллагены). Сложные белки – НП, МП, ГП, ФП, ХП, ЛП. Такое деление белков условно, поскольку многие простые белки также содержат небелковый компонент.

Различают классификацию белков по функциональному принципу – 1) ферменты, 2) белки-гормоны, 3) белки-регуляторы активности генома, 4) защитные белки (антитела, белки св. и антисв. Систем), 5) токсические белки, 6) транспортные белки, 7) мембранные белки,  сократительные белки, 9) рецепторные белки, 10) белки-ингибиторы ферментов, 11) белки вирусной оболочки, 12) белки с иными функциями.

Сложные белки – фосфо-, металло-, хромо-, липопротеиды

Фосфопротеиды - строение, представители, значение.

ФП это сложные белки, обособленной простетической группы не имеют. Ее роль выполняют остатки фосфорной кислоты, связанные сложноэфирными  связями с гидроксильными группами оксиаминокислот: сер, тре, тир. К одному остатку аминокислоты может присоединиться несколько фрагментов фосфорной кислоты.

ФП – это полноценные белки с большой молекулярной массой при нагревании не свертываются (термостабильны), в воде не растворимы, но хорошо растворимы в разбавленных растворах солей и щелочей. Имеют кислый характер (ИЭТ ~ 4,7) из-за остатков фосфорной кислоты, поэтому осаждаются кислотами. Это полноценные белки. Значение ФП – они служат пластическим материалом (источники незаменимых аминокислот и фосфора) и играют важную роль в росте организма, поэтому особенно нужны детям. Представители – казеин молока (Р ~ 1%), вителлин и фосвитин – ФП яичного желтка (Р ~ 10%), ихтуллин – в икре рыб (фосфора более 10%). Казеин (от лат caseus – сыр) – основной белок молока, составляет около 80% от белков коровьего молока. Казеин получают из молока путем осаждения кислотой при рН 4,6 и температуре 20С. казеин – это семейство различных однотипных белков, состоящих из 4 фракций – альфа, хи, бета и гамма. В коровьем молоке идентифицировано до 17 подфракций казеина. Из фракций казеина особое значение имеет хи казеин, с которым связаны загадочные процессы сычужного свертывания молока при производстве сыров.

Хромопротеиды — строение, представители, значение.

ХП это окрашенные белки (chroma – краска). Молекулы состоят из простого белка и простетической группы, окрашенной обычно за счет металла или витамина. Среди ХП различают дыхательные белки и дыхательные ферменты, которые образуют подгруппу гемопротеидов. Кроме гемопротеидов в группу ХП входят пигменты (родопсин, меланин), магний-порфирины (хлорофилл), желтые ферменты – флавиновые ферменты (выполняют роль дыхательных ферментов).

К дыхательным белкам относятся гемоглобин (Нb) – красный пигмент крови и миоглобин (Мgb) – красный  пигмент мышц.

Гемоглобин состоит из простого белка типа гистонов – глобина и 4-х гемов (простетическая группа). Глобин состоит из 2-х п/п альфа цепей (по 141 аминокислоте в каждой) и 2-х бета-цепей (по 146 аминокислот в каждой). Видовая специфичность гемоглобина обусловлена особенностями аминокислотного состава глобина. Например, в глобине человека нет иле. Глобин, соединяясь с гемом, превращает малорастворимую и инертную структуру в хорошо растворимую и активную форму, способную связывать кислород. В свою очередь гемы придают устойчивость большим молекулам глобина.

Гем – производное порфирина, состоит из 4-х пиррольных колец, связанных в циклическую структуру метиновыми мостиками. Порфин с заместителями у бета-углерода называется порфирином. Различные порфирины различаются друг от друга характером заместителей. Гемы гемоглобина у 1,3,5,8 атомов углерода содержат СН3 группу (метил), у 2,4 – винильные радикалы, у 6,7 – остатки пропионовых кислот. Соединяясь с ионом железа, порфирин образует гем. железо присоединяется к атомам азота II и IV колец ковалентными и к III и I колец нековалентными (координационными связями). Строение всех 4-х гемов идентичное – показать на табл или пленке и дать списать. Каждый гем соединен с одной п/п цепью (a или b) двумя координационными связями иона железа с имидазольными кольцами гистидинов. Одна из этих связей постоянна, а другая разрывается, когда к гемоглобину присоединяется кислород.

В 1957 году биохимики Д.Кендрью и М.Перутц получили Нобелевскую премию за расшифровку строения молекулы гемоглобина.

Во время развития организма гемоглобин претерпевает определенные изменения: на ранних стадиях у эмбриона содержится эмбриональный гемоглобин Е, который после 3-4 месяцев развития заменяется фетальным F, содержащим 2 a и 2 g цепи. Кровь новорожденного содержит 80% фетального гемоглобина, но к концу первого года жизни он почти полностью заменяется на гемоглобин А. В крови взрослого человека все же присутствует 1,5% фетального гемоглобина. Он имеет большее сродство к кислороду, чем гемоглобин взрослого организма – гемоглобин А и обеспечивает снабжение плода кислородом при меньшем его парциальном давлении. В дополнение к основному гемоглобину взрослого человека А1, имеется гемоглобин А2, молекула которого состоит из 2 a цепей и 2 s цепей. На долю гемоглобина А2приходится 2,5% от всего гемоглобина.

Роль гемоглобина.

 Гемоглобин – основной белок эритроцитов. В 1-ом эритроците содержится 340 млн молекул гемоглобина, каждая из которых состоит из 103 атомов С, Н, О, N, S и 4 атомов железа. Основная роль – перенос кислорода от легких к тканям (оксигенация – показать на доске) и углекислого газа от тканей к легким. Гемоглобин образует буферные системы, которые участвуют в поддержании КОС. При распаде гемоглобина образуются пигменты кала, мочи и желчи. Гемоглобин участвует в обезвреживании оксида азота, который может присоединяться к нему и образовывать нитрозгемоглобин.

Молекула миоглобина состоит из 1-го гема и 1-ой п/п цепи (из 153 аминокислот). Гем миоглобина такой же как у гемоглобина. Роль миоглобина – транспорт кислорода от оксигемоглобина к ферментам дыхательной цепи в клетке –показать на доске реакцию.

Содержится, в основном, в цитоплазме мышечных клеток. Также служит в качестве депо кислорода. Миоглобина больше в натренированных мышцах – у диких животных, особенно у ныряющих – кашалота, тюленей  (например, у зайца больше, чем у кролика). Миоглобин специфический белок мышц, поэтому его появление вы сыворотке крови говорит о поражении мышечной ткани (заболевания мышц, инфаркт миокарда).

Дыхательные ферменты.

Это биологические катализаторы, ускоряющие ход ОВР в клетках и тканях. это сложные белки, среди них различают гемсодержащие (Цх, каталаза, пероксидазы) и негемовые (флавиновые ферменты). У первых простетической группой являются гемы различного строения, а у вторых – производные витамина В2 (рибофлавина).

К группе ХП относятся также белки-пигменты, которые состоят из продукта окисления тирозина – меланина и простого белка. Это пигменты коричневого и черного цвета, содержатся в волосах, коже, сетчатке глаз. От их количества зависит окраска этих органов.

! МП (на занятии) – это сложные белки, содержащие в молекуле металлы, но в отличие от ХП здесь металлы свободны и выполняют роль простетической группы. Связь между белком и ионами металлов может быть прочной и непрочной у различных МП. Представители: а) ферритин, содержат 20% трехвалентного (окисленного) железа и выполняют роль депо железа в организме. Белок откладывается в печени и селезенке. Железо связано прочной связью с азотом белковой части. Некоторая часть ферритина находится в плазме крови. Определение ферритина в плазме крови позволяет более точно оценить запасы железа. Единственной причиной снижения концентрации ферритина в плазме является уменьшение запсов железа. Концентрация ниже 20 мкг/л указывает на истощение, а ниже 12 мкг/л на полное отсутствие запсов железа. Однако ферритин является острофазовым белком и пациентов с дефицитом железа на фоне острого заболевания концентрация ферритина в плазме может быть в пределах нормы. У пациентов с анемией и хроническим заболеванием концентрация ферритина в плазме укажет на то, имеется ли одновременно дефицит железа и хватит ли его запасов для встраивания в гемоглобин при возросших потребностях, если основное заболевание может быть вылечено. Концентрация ферритина в плазме повышается при избытке железа, например, при гемахроматозе, но может также быть повышена у больных с заболеваниями печени и некоторыми типами рака, что связано с высвобождением белка из тканей. Таким образом, повышение концентрации ферритина следует интерпретировать с осторожностью, но нормальная концентрация говорит об отсутствии перегрузки железом. Б) трансферрин, содержит около 0,13% железа и выполняет роль переносчика железа (главным образом в составе бета-глобулинов), которое в молекуле связано непрочно с ОН-группой тирозина. Каждая молекула трансферрина связывает два иона двухвалентного железа. В норме трансферрин насыщен железом примерно на одну треть. В) гемосидерин. Роль этого белка изучена не достаточно. Это водонерастворимый комплекс, содержащий также УГВ и нуклеотиды. Содержится в РЭС печени и селезенки.  Г) церулоплазмин. Роль этого белка в транспорте меди, также обладает ферментативной активностью. К МП относят также ряд ферментов, для которых металл является «мостиком» между белковой и небелковой частями, или непосредственно участвует в выполнении каталитической функции. Например, карбоангидраза содержит цинк, для активности фосфотрансфераз и киназ необходимы ионы магния и марганца, тирозиназа и ЦХО содержат медь.

Липопротеиды — строение, представители, значение

ЛП – это сложные комплексы, включающие в себя большие количества непрочно связанных между собой молекул различных представителей липидов (ФЛ, ХСН, ТАГ, СЖК, СФЛ). Различают свободные (ЛП крови) и структурные ЛП (в составе мембран, ЭПР, органоидов). Свободные (сывороточные) ЛП построены по типу мицелл, т.е. имеют гидрофобное ядро, содержащее ХСН и ТАГи. Ядро окружено гидрофильной оболочкой из белков и ФЛ. Различают альфа-ЛП (ЛПВП), b-ЛП (ЛПНП), преb-ЛП (ЛПОНП), которые отличаются разным содержанием липидов и белка. ЛП – это транспортная форма липидов, в которых липиды становятся легко растворимыми в воде и легко переносятся кровью. Структурные ЛП построены иначе: внутри – белок, снаружи – липиды. Их функция тесно связана с метаболизмом клетки.

Цветные реакции на белки

 

Цветные реакции на белки являются качественными реакциями, обусловленными специфическими группами - радикалами. Некоторые из таких реакций широко используются в биохимической практике для изучения структуры и  аминокислотного состава белков, их количественного определения.

1.     Биуретовая реакция

(на обнаружение пептидных связей в белках)

Белки (пептиды) в щелочном растворе в присутствии солей меди (II) образуют комплексные ее соединения, окрашенные в сине-фиолетовый или красно-фиолетовый цвет.

Для пептидной (амидной) группы характерна лактам-лактимная таутомерия:

 

В щелочной среде преобладающая лактимная (енольная) форма полипептида взаимодействует с медью с образованием стабильного окрашенного комплекса:

 

Ход работы. К 1 мл 1% раствора белка (желатина, яичного белка или  сывороточного альбумина) добавляют 1 мл 10% раствора щелочи (NaOH или KOH) и 1 каплю 1% раствора сульфата меди. Появляется сине-фиолетовое или красно-фиолетовое окрашивание.

 

2. НИНГИДРИНОВАЯ РЕАКЦИЯ

(на аминогруппу, находящуюся в a-положении)

Белки, полипептиды и свободные a-аминокислоты при нагревании реагируют с нингидрином (трикетогидринденгид-ратом) с образованием продукта конденсации, окрашенного в фиолетовый цвет:

 

Ход работы. К 1 мл 1% раствора белка прибавляют 0,5 мл 0,5% раствора нингидрина и нагревают до кипения. Появляется фиолетово-синее окрашивание.

Проделывают эту реакцию с раствором аминокислоты, взяв вместо раствора белка 1% раствор глицина. Сравнить полученные результаты и сделать вывод.

 

3. Реакция Сакагучи (на аргинин)

Белки, содержащие аргинин, в присутствии щелочи дают красное окрашивание с гипобромитом и a-нафтолом. Гуанидиновая группа аргинина окисляется гипобромитом, и окисленный аргинин при взаимодействии с a-нафтолом образует продукт конденсации красного цвета:

 

Ход работы. К 0,5 мл 1% раствора белка (яичного белка, желатина) добавляют 0,5 мл 10% раствора щелочи, 3 капли 0,1% спиртового раствора a-нафтола и после перемешивания 2-3 капли 2% раствора гипобромита натрия. Появляется красное окрашивание.

4. Реакция Фоля (на цистеин и цистин)

При кипячении белка со щелочью от цистеина (цистина) легко отщепляется сера в виде сероводорода, который в щелочной среде образует сульфид натрия:

 СH2SH                         CH2OH

                                  

 CHNH2 + 2 NaOH ¾® CHNH2 + Na2S + H2O

                                                              

 COOH                          COOH

 цистеин                       серин

Для выявления сульфида натрия используют ацетат свинца, который при взаимодействии с гидроксидом натрия превращается в его  плюмбит:

Pb(CH3COO)2 + 2NaOH ® Pb(ONa)2 + 2CH3COOH

 

В результате взаимодействия ионов серы и свинца образуется сульфид свинца черного или бурого цвета:

Na2S + Pb(ONa)2 + 2H2O ® PbS¯ + 4NaOH

                                            (черный

                                             осадок)

Ход работы. К 1 мл 1% раствора яичного белка или кусочку шерстяной нити добавляют 1 мл 30% щелочи и 3-4 капли 5% раствора ацетата свинца. При интенсивном кипячении жидкость окрашивается в бурый или черный цвет.

Реакцию Фоля проделывают с 1% раствором желатина, в составе которого нет серосодержащих аминокислот. Черный осадок сульфида свинца не образуется.

5. Ксантопротеиновая реакция

 (на ароматические аминокислоты)

При нагревании с концентрированной азотной кислотой белки дают желтое окрашивание. Реакция обусловлена наличием в белках циклических аминокислот (фенилаланина, тирозина и триптофана) и основана на образовании нитропроизводных этих аминокислот, имеющих желтую окраску:

Нитропроизводные аминокислот в щелочной среде образуют соли хиноидной структуры, окрашенные в оранжевый цвет:

Ход работы. К 1 мл 1% раствора альбумина или яичного белка прибавляют 5 капель концентрированной азотной кислоты. Появляется осадок. При осторожном нагревании смесь окрашивается в желтый цвет. После охлаждения осторожно добавляют 10 капель концентрированного раствора аммиака (или 30% раствора  едкого натра), при этом желтая окраска переходит в оранжевую.

Проделать ксантопротеиновую реакцию с ароматической аминокислотой, взяв вместо раствора белка 0,1% раствор тирозина.

Ксантопротеиновая реакция не идет с белками, не содержащими циклических аминокислот (клупеином, сальмином, желатином). Проделать реакцию с 1% раствором желатина.

 

6. Реакция Милона  (на тирозин)

Реакция Милона открывает в белке тирозин, в составе которого имеется фенольный радикал. При нагревании белка с реактивом Милона (смесь нитратов и нитритов ртути  (I) и (П), растворенных в концентрированной азотной кислоте) образуется осадок, окрашенный сначала в розовый, а затем в красный цвет. Реактив Милона дает окрашивание почти со всеми фенолами:

 

 

Ход работы. К 1 мл 1% раствора яичного белка добавляют 3-5 капель реактива Милона и осторожно нагревают до образования окрашенного в красный цвет осадка.

Проделать реакцию Милона с 1% раствором желатина, 0,1% раствором тирозина и фенола.

 

7. Реакция Адамкевича (на триптофан)

Белки, содержащие триптофан, в присутствии глиоксиловой и серной кислот дают красно-фиолетовое окрашивание. Реакция основана на способности триптофана взаимодействовать в кислой среде с альдегидами (глиоксиловой кислотой) с образованием окрашенных продуктов конденсации:

Глиоксиловая кислота всегда присутствует в небольшом количестве в ледяной уксусной кислоте, которую используют в реакции Адамкевича.

Ход работы. К 1 мл 1% раствора яичного белка добавляют 1 мл ледяной (концентрированной) уксусной кислоты и осторожно нагревают до растворения осадка. После охлаждения к смеси осторожно добавляют 1 мл концентрированной серной кислоты (по каплям по стенке пробирки, чтобы жидкости не смешались). Через 5-10 минут на границе раздела двух слоев наблюдают образование красно-фиолетового кольца.

Проделывают реакцию Адамкевича с 0,1% раствором триптофана.

 

 

Oddsei - What are the odds of anything.