1.   Anatomy of the endocrine system.

2.   Anatomy of the immune system.

3.   Anatomy of the spinal cord.

 

 

Lesson # 4

Theme 1. Anatomy of the endocrine system

ENDOCRINE GLANDS do not have the ducts, their secret gets immediately into blood. They have prettily abundant blood supplying, and their secret has special chemical and physiological activity. Endocrine system for origin subdivides into glands with endodermal, mesodermal or ektodermal origin.

Glands of endodermal origin subdivide into bronchiogenic group (thyroid, parathyroid and thymus glands) and glands developed from epithelium of intestinal tube (endocrine part of pancreas).

Glands of mesodermal origin (interrenal system) include interstitial cells of sexual glands and cortex of adrenal glands.

Glands of ectoderm group include hypophysis (neurogenic group) and medulla of suprarenal glands and paraganglia.

 

There are certain organs which are very similar to secreting glands, but differ from them in one essential particular, viz., they do not possess any ducts by which their secretion is discharged. These organs are known as ductless glands. They are capable of internal secretion—that is to say, of forming, from materials brought to them in the blood, substances which have a certain influence upon the nutritive and other changes going on in the body. This secretion is carried into the blood stream, either directly by the veins or indirectly through the medium of the lymphatics.

  These glands include the thyroid, the parathyroids and the thymus; the pituitary body and the pineal body; the chromaphil and cortical systems to which belong the suprarenals, the paraganglia and aortic glands, the glomus caroticum and perhaps the glomus coccygeum. The spleen is usually included in this list and sometimes the lymph and hemolymph nodes described with the lymphatic system. Other glands as the liver, pancreas and sexual glands give off internal secretions, as do the gastric and intestinal mucous membranes.

 

Опис : G:\gray\henry gray anatomy\www.bartleby.com\107\Images\large\image1174.gif

The thyroid gland and its relations.

The Thyroid gland is situated in anterior neck area on level of the IV-VI cervical vertebrae and consists of right and left lobes communicated by isthmus, which continues upward by pyramidal portion. Thyroid gland is built by parenchyma, which subdivides into lobuli by septa. Follicles are situated in lobules, which contain hormones of thyroid gland: thyroxine, triiodthyronin, calcitonin. They influence on all types of metabolism.

The Thyroid Gland (Glandula Thyreiodea) is a highly vascular organ, situated at the front and sides of the neck; it consists of right and left lobes connected across the middle line by a narrow portion, the isthmus. Its weight is somewhat variable, but is usually about 30 grams. It is slightly heavier in the female, in whom it becomes enlarged during menstruation and pregnancy.

  The lobes (lobuli gl. thyreoideæ) are conical in shape, the apex of each being directed upward and lateralward as far as the junction of the middle with the lower

third of the thyroid cartilage; the base looks downward, and is on a level with the fifth or sixth tracheal ring. Each lobe is about 5 cm. long; its greatest width is about 3 cm., and its thickness about 2 cm. The lateral or superficial surface is convex, and covered by the skin, the superficial and deep fasciæ, the Sternocleidomastoideus, the superior belly of the Omohyoideus, the Sternohyoideus and Sternothyreoideus, and beneath the last muscle by the pretracheal layer of the deep fascia, which forms a capsule for the gland. The deep or medial surface is moulded over the underlying structures, viz., the thyroid and cricoid cartilages, the trachea, the Constrictor pharyngis inferior and posterior part of the Cricothyreoideus, the esophagus (particularly on the left side of the neck), the superior and inferior thyroid arteries, and the recurrent nerves. The anterior border is thin, and inclines obliquely from above downward toward the middle line of the neck, while the posterior border is thick and overlaps the common carotid artery, and, as a rule, the parathyroids.

  The isthmus (isthmus gl. thyreoidea) connects together the lower thirds of the lobes; it measures about 1.25 cm. in breadth, and the same in depth, and usually covers the second and third rings of the trachea. Its situation and size present, however, many variations. In the middle line of the neck it is covered by the skin and fascia, and close to the middle line, on either side, by the Sternothyreoideus. Across its upper border runs an anastomotic branch uniting the two superior thyroid arteries; at its lower border are the inferior thyroid veins. Sometimes the isthmus is altogether wanting.

  A third lobe, of conical shape, called the pyramidal lobe, frequently arises from the upper part of the isthmus, or from the adjacent portion of either lobe, but most commonly the left, and ascends as far as the hyoid bone. It is occasionally quite detached, or may be divided into two or more parts.

  A fibrous or muscular band is sometimes found attached, above, to the body of the hyoid bone, and below to the isthmus of the gland, or its pyramidal lobe. When muscular, it is termed the Levator glandulæ thyreoideæ.

  Small detached portions of thyroid tissue are sometimes found in the vicinity of the lateral lobes or above the isthmus; they are called accessory thyroid glands (glandulæ thyreoideæ accessoriæ).

 

Опис : G:\gray\henry gray anatomy\www.bartleby.com\107\Images\large\image1175.gif

Scheme showing development of branchial epithelial bodies. (Modified from Koh.) I, II, III, IV. Branchial pouches.

Development.—The thyroid gland is developed from a median diverticulum, which appears about the fourth week on the summit of the tuberculum impar, but later is found in the furrow immediately behind the tuberculum. It grows downward and backward as a tubular duct, which bifurcates and subsequently subdivides into a series of cellular cords, from which the isthmus and lateral lobes of the thyroid gland are developed. The ultimo-branchial bodies from the fifth pharyngeal pouches are enveloped by the lateral lobes of the thyroid gland; they undergo atrophy and do not form true thyroid tissue. The connection of the diverticulum with the pharynx is termed the thyroglossal duct; its continuity is subsequently interrupted, and it undergoes degeneration, its upper end being represented by the foramen cecum of the tongue, and its lower by the pyramidal lobe of the thyroid gland.

 

Structure.—The thyroid gland is invested by a thin capsule of connective tissue, which projects into its substance and imperfectly divides it into masses of irregular form and size. When the organ is cut into, it is of a brownish-red color, and is seen to be made up of a number of closed vesicles, containing a yellow glairy fluid, and separated from each other by intermediate connective tissue.

 

Опис : G:\gray\henry gray anatomy\www.bartleby.com\107\Images\large\image1176.gif

Section of thyroid gland of sheep.

  The vesicles of the thyroid of the adult animal are generally closed spherical sacs; but in some young animals, e. g., young dogs, the vesicles are more or less tubular and branched. This appearance is supposed to be due to the mode of growth of the gland, and merely indicates that an increase in the number of vesicles is taking place. Each vesicle is lined by a single layer of cubical epithelium. There does not appear to be a basement membrane, so that the epithelial cells are in direct contact with the connective-tissue reticulum which supports the acini. The vesicles are of various sizes and shapes, and contain as a normal product a viscid, homogeneous, semifluid, slightly yellowish, colloid material; red corpuscles are found in it in various stages of disintegration and decolorization, the yellow tinge being probably due to the hemoglobin, which is thus set free from the colored corpuscles. The colloid material contains an iodine compound, iodothyrin, and is readily stained by eosin. According to Bensley 180 the thyroid gland prepares and secretes into the vascular channels a substance, formed under normal conditions in the outer pole of the cell and excreted from it directly without passing by the indirect route through the follicular cavity. In addition to this direct mode of secretion there is an indirect mode which consists in the condensation of the secretion into the form of droplets, having high content of solids, and the extension of these droplets into the follicular cavity. These droplets are formed in the same zone of the cell as that in which the primary or direct secretion is formed.

  This internal secretion of the thyroid is supposed to contain a specific hormone which acts as a chemical stimulus to other tissues, increasing their metabolism.

 

Vessels and Nerves.—The arteries supplying the thyroid gland are the superior and inferior thyroids and sometimes an additional branch (thyroidea ima) from the innominate artery or the arch of the aorta, which ascends upon the front of the trachea. The arteries are remarkable for their large size and frequent anastomoses. The veins form a plexus on the surface of the gland and on the front of the trachea; from this plexus the superior, middle, and inferior thyroid veins arise; the superior and middle end in the internal jugular, the inferior in the innominate vein. The capillary bloodvessels form a dense plexus in the connective tissue around the vesicles, between the epithelium of the vesicles and the endothelium of the lymphatics, which surround a greater or smaller part of the circumference of the vesicle. The lymphatic vessels run in the interlobular connective tissue, not uncommonly surrounding the arteries which they accompany, and communicate with a net-work in the capsule of the gland; they may contain colloid material. They end in the thoracic and right lymphatic trunks. The nerves are derived from the middle and inferior cervical ganglia of the sympathetic.

 

The Parathyroid gland has pair superior parathyroid gland and inferior parathyroid gland that situated on back surface of thyroid gland. Accessory parathyroid glands can be present. Parathyroid gland excretes parathyroid hormone that regulates metabolism of phosphorus and calcium.

 

The parathyroid glands are small brownish-red bodies, situated as a rule between the posterior borders of the lateral lobes of the thyroid gland and its capsule. They differ from it in structure, being composed of masses of cells arranged in a more or less columnar fashion with numerous intervening capillaries. They measure on an average about 6 mm. in length, and from 3 to 4 mm. in breadth, and usually present the appearance of flattened oval disks. They are divided, according to their situation, into superior and inferior. The superior, usually two in number, are the more constant in position, and are situated, one on either side, at the level of the lower border of the cricoid cartilage, behind the junction of the pharynx and esophagus. The inferior, also usually two in number, may be applied to the lower edge of the lateral lobes, or placed at some little distance below the thyroid gland, or found in relation to one of the inferior thyroid veins.

 

Опис : G:\gray\henry gray anatomy\www.bartleby.com\107\Images\large\image1177.gif

Parathyroid glands.

  In man, they number four as a rule; fewer than four were found in less than 1 per cent. of over a thousand persons, but more than four in over 33 per cent. of 122 bodies examined by Civalleri. In addition, numerous minute islands of parathyroid tissue may be found scattered in the connective tissue and fat of the neck around the parathyroid glands proper, and quite distinct from them.

 

Development.—The parathyroid bodies are developed as outgrowths from the third and fourth branchial pouches

  A pair of diverticula arise from the fifth branchial pouch and form what are termed the ultimo-branchial bodies: these fuse with the thyroid gland, but probably contribute no true thyroid tissue.

 

Structure.—Microscopically the parathyroids consist of intercommunicating columns of cells supported by connective tissue containing a rich supply of blood capillaries. Most of the cells are clear, but some, larger in size, contain oxyphil granules. Vesicles containing colloid have been described as occurring in the parathyroid, but the observation has not been confirmed.

  No doubt the parathyroid glands produce an internal secretion essential to the well-being of the human economy; but it is still a matter of dispute what symptoms of disease are produced by their removal and suppression of their secretion. Pepere believes that they show signs of exceptional activity during pregnancy, and that parathyroid insufficiency is a main factor in the production of tetany in infants and adults, of eclampsia, and of certain sorts of fits. It is probable that the tetany following parathyroidectomy is due to the accumulation of ammonium carbonate and Kendall has suggested that the function of the parathyroid is to convert ammonium carbonate into urea.

 

Endocrine part of sexual glands (testicle and ovary)

Interstitial (Leidig) cells are situated in parenchyma of testicle. They excrete testosteron, which influences on development of secondary sexual signs. Corpus luteum positioned in ovaric parenchyma produces a progesteron (it prepares a mucous membrane of the uterus membrane to embryo fixation, detains development of new follicles and stimulates development of mammary glands during pregnancy). Follicular epithelium excretes estrogen, which contributes to development of primary female sexual signs (ovary and uterus) also development of secondary female sexual signs, as growth of mammary gland, hair according female type cetera and assists the regulation of menses.

Endocrine part of pancreas is represented by islets of Langerhans. They produce insulin and glucagon, that regulate metabolism of carbohydrates, regulative a sugar contents in organism. Attached to insufficient production of these hormonal disease sugar diabetes arises.

 

The pancreas is a compound racemose gland, analogous in its structures to the salivary glands, though softer and less compactly arranged than those organs. Its secretion, the pancreatic juice, carried by the pancreatic duct to the duodenum, is an important digestive fluid. In addition the pancreas has an important internal secretion, probably elaborated by the cells of Langerhans, which is taken up by the blood stream and is concerned with sugar metabolism. It is long and irregularly prismatic in shape; its right extremity, being broad, is called the head, and is connected to the main portion of the organ, or body, by a slight constriction, the

neck; while its left extremity gradually tapers to form the tail. It is situated transversely across the posterior wall of the abdomen, at the back of the epigastric and left hypochondriac regions. Its length varies from 12.5 to 15 cm., and its weight from 60 to 100 gm.

 

Опис : G:\gray\henry gray anatomy\www.bartleby.com\107\Images\large\image1097.gif

Transverse section through the middle of the first lumbar vertebra, showing the relations of the pancreas.

 

 

Опис : G:\gray\henry gray anatomy\www.bartleby.com\107\Images\large\image1098.gif

The duodenum and pancreas.

 

Опис : G:\gray\henry gray anatomy\www.bartleby.com\107\Images\large\image1099.gif

The pancreas and duodenum from behind.

Relations.—The Head (caput pancreatis) is flattened from before backward, and is lodged within the curve of the duodenum. Its upper border is overlapped by the superior part of the duodenum and its lower overlaps the horizontal part; its right and left borders overlap in front, and insinuate themselves behind, the descending and ascending parts of the duodenum respectively. The angle of junction of the lower and left lateral borders forms a prolongation, termed the uncinate process. In the groove between the duodenum and the right lateral and lower borders in front are the anastomosing superior and inferior pancreaticoduodenal arteries; the common bile duct descends behind, close to the right border, to its termination in the descending part of the duodenum.

 

Anterior Surface.—The greater part of the right half of this surface is in contact with the transverse colon, only areolar tissue intervening. From its upper part the neck springs, its right limit being marked by a groove for the gastroduodenal artery. The lower part of the right half, below the transverse colon, is covered by peritoneum continuous with the inferior layer of the transverse mesocolon, and is in contact with the coils of the small intestine. The superior mesenteric artery passes down in front of the left half across the uncinate process; the superior mesenteric vein runs upward on the right side of the artery and, behind the neck, joins with the lienal vein to form the portal vein.

 

Posterior Surface.—The posterior surface is in relation with the inferior vena cava, the common bile duct, the renal veins, the right crus of the diaphragm, and the aorta.

  The Neck springs from the right upper portion of the front of the head. It is about 2.5 cm. long, and is directed at first upward and forward, and then upward and to the left to join the body; it is somewhat flattened from above downward and backward. Its antero-superior surface supports the pylorus; its postero-inferior surface is in relation with the commencement of the portal vein; on the right it is grooved by the gastroduodenal artery.

  The Body (corpus pancreatis) is somewhat prismatic in shape, and has three surfaces: anterior, posterior, and inferior.

  The anterior surface (facies anterior) is somewhat concave; and is directed forward and upward: it is covered by the postero-inferior surface of the stomach which rests upon it, the two organs being separated by the omental bursa. Where it joins the neck there is a well-marked prominence, the tuber omentale, which abuts against the posterior surface of the lesser omentum.

  The posterior surface (facies posterior) is devoid of peritoneum, and is in contact with the aorta, the lienal vein, the left kidney and its vessels, the left suprarenal gland, the origin of the superior mesenteric artery, and the crura of the diaphragm.

  The inferior surface (facies inferior) is narrow on the right but broader on the left, and is covered by peritoneum; it lies upon the duodenojejunal flexure and on some coils of the jejunum; its left extremity rests on the left colic flexure.

  The superior border (margo superior) is blunt and flat to the right; narrow and sharp to the left, near the tail. It commences on the right in the omental tuberosity, and is in relation with the celiac artery, from which the hepatic artery courses to the right just above the gland, while the lienal artery runs toward the left in a groove along this border.

  The anterior border (margo anterior) separates the anterior from the inferior surface, and along this border the two layers of the transverse mesocolon diverge from one another; one passing upward over the anterior surface, the other backward over the inferior surface.

  The inferior border (margo inferior) separates the posterior from the inferior surface; the superior mesenteric vessels emerge under its right extremity.

  The Tail (cauda pancreatis) is narrow; it extends to the left as far as the lower part of the gastric surface of the spleen, lying in the phrenicolienal ligament, and it is in contact with the left colic flexure.

 

VIDEO

 

  Birmingham described the body of the pancreas as projecting forward as a prominent ridge into the abdominal cavity and forming part of a shelf on which the stomach lies. “The portion of the pancreas to the left of the middle line has a very considerable antero-posterior thickness; as a result the anterior surface is of considerable extent; it looks strongly upward, and forms a large and important part of the shelf. As the pancreas extends to the left toward the spleen it crosses the upper part of the kidney, and is so moulded on to it that the top of the kidney forms an extension inward and backward of the upper surface of the pancreas and extends the bed in this direction. On the other hand, the extremity of the pancreas comes in contact with the spleen in such a way that the plane of its upper surface runs with little interruption upward and backward into the concave gastric surface of the spleen, which completes the bed behind and to the left, and, running upward, forms a partial cap for the wide end of the stomach. 174

 

Опис : G:\gray\henry gray anatomy\www.bartleby.com\107\Images\large\image1100.gif

The pancreatic duct.

  The Pancreatic Duct (ductus pancreaticus [Wirsungi]; duct of Wirsung) extends transversely from left to right through the substance of the pancreas (1100). It commences by the junction of the small ducts of the lobules situated in the tail of the pancreas, and, running from left to right through the body, it receives the ducts of the various lobules composing the gland. Considerably augmented in size, it reaches the neck, and turning downward, backward, and to the right, it comes into relation with the common bile duct, which lies to its right side; leaving the head of the gland, it passes very obliquely through the mucous and muscular coats of the duodenum, and ends by an orifice common to it and the common bile duct upon the summit of the duodenal papilla, situated at the medial side of the descending portion of the duodenum, 7.5 to 10 cm. below the pylorus. The pancreatic duct, near the duodenum, is about the size of an ordinary quill. Sometimes the pancreatic duct and the common bile duct open separately into the duodenum. Frequently there is an additional duct, which is given off from the pancreatic duct in the neck of the pancreas and opens into the duodenum about 2.5 cm. above the duodenal papilla. It receives the ducts from the lower part of the head, and is known as the accessory pancreatic duct (duct of Santorini).

 

Development is developed in two parts, a dorsal and a ventral. The former arises as a diverticulum from the dorsal aspect of the duodenum a short distance above the hepatic diverticulum, and, growing upward and backward into the dorsal mesogastrium, forms a part of the head and uncinate process and the whole of the body and tail of the pancreas. The ventral part appears in the form of a diverticulum from the primitive bile-duct and forms the remainder of the head and uncinate process of the pancreas. The duct of the dorsal part (accessory pancreatic duct) therefore opens independently into the duodenum, while that of the ventral part (pancreatic duct) opens with the common bile-duct. About the sixth week the two parts of the pancreas meet and fuse and a communication is established between their ducts. After this has occurred the terminal part of the accessory duct, i. e., the part between the duodenum and the point of meeting of the two ducts, undergoes little or no enlargement, while the pancreatic duct increases in size and forms the main duct of the gland. The opening of the accessory duct into the duodenum is sometimes obliterated, and even when it remains patent it is probable that the whole of the pancreatic secretion is conveyed through the pancreatic duct.

Опис : G:\gray\henry gray anatomy\www.bartleby.com\107\Images\large\image1102.gif

Pancreas of a human embryo at end of sixth week.

 

1103– Schematic and enlarged cross-section through the body of a human embryo in the region of the mesogastrium. Beginning of third month. (Toldt.) (See enlarged image)

 

  At first the pancreas is directed upward and backward between the two layers of the dorsal mesogastrium, which give to it a complete peritoneal investment, and its surfaces look to the right and left. With the change in the position of the stomach the dorsal mesogastrium is drawn downward and to the left, and the right side of the pancreas is directed backward and the left forward. The right surface becomes applied to the posterior abdominal wall, and the peritoneum which covered it undergoes absorption, and thus, in the adult, the gland appears to lie behind the peritoneal cavity.

 

Structure—In structure, the pancreas resembles the salivary glands. It differs from them, however, in certain particulars, and is looser and softer in its texture. It is not enclosed in a distinct capsule, but is surrounded by areolar tissue, which dips into its interior, and connects together the various lobules of which it is composed. Each lobule, like the lobules of the salivary glands, consists of one of the ultimate ramifications of the main duct, ending in a number of cecal pouches or alveoli, which are tubular and somewhat convoluted. The minute ducts connected with the alveoli are narrow and lined with flattened cells. The alveoli are almost completely filled with secreting cells, so that scarcely any lumen is visible. In some animals spindle-shaped cells occupy the center of the alveolus and are known as the centroacinar cells of Langerhans. These are prolongations of the terminal ducts. The true secreting cells which line the wall of the alveolus are very characteristic. They are columnar in shape and present two zones: an outer one, clear and finely striated next the basement membrane, and an inner granular one next the lumen. In hardened specimens the outer zone stains deeply with various dyes, whereas the inner zone stains slightly. During activity the granular zone gradually diminishes in size, and when exhausted is only seen as a small area next to the lumen. During the resting stages it gradually increases until it forms nearly three-fourths of the cell. In some of the secreting cells of the pancreas is a spherical mass, staining more easily than the rest of the cell; this is termed the paranucleus, and is believed to be an extension from the nucleus. The connective tissue between the alveoli presents in certain parts collections of cells, which are termed interalveolar cell islets (islands of Langerhans). The cells of these stain lightly with hematoxylin or carmine, and are more or less polyhedral in shape, forming a net-work in which ramify many capillaries. There are two main types of cell in the islets, distinguished as A-cells and B-cells according to the special staining reactions of the granules they contain. The cell islets have been supposed to produce the internal secretion of the pancreas which is necessary for carbohydrate metabolism, but numerous researches have so far failed to elucidate their real function.

 

Опис : G:\gray\henry gray anatomy\www.bartleby.com\107\Images\large\image1105.gif

Section of pancreas

 

  The walls of the pancreatic duct are thin, consisting of two coats, an external fibrous and an internal mucous; the latter is smooth, and furnished near its termination with a few scattered follicles.

 

Vessels and Nerves.—The arteries of the pancreas are derived from the lienal, and the pancreaticoduodenal branches of the hepatic and superior mesenteric. Its veins open into the lienal and superior mesenteric veins. Its nerves are filaments from the lienal plexus.

 

The Adrenal gland is a pair endocrine gland, which lies on superior extremity of right and left kidneys on level of the Th 11 – Th 12 vertebrae. Each adrenal gland has triangle shape and has anterior surface, posterior surface and renal surface and superior margin and medial margin, and also has the hilus and consists of cortex and medulla matter. Cortex produces mineralocorticoids (aldosterone), glucocorticoids and androgens. Medulla of adrenal glands produces adrenalin and noradrenalin.

Опис : G:\Англійська\gray\henry gray anatomy\www.bartleby.com\107\Images\large\image1183.gif


Suprarenal glands viewed from the front.

 

Опис : G:\Англійська\gray\henry gray anatomy\www.bartleby.com\107\Images\large\image1184.gif


Suprarenal glands viewed from behind.

 

 

The Paraganglia are small agglomerations of chromaffin cells, placed closely near abdominal aorta (aortic paraganglia) or in thickness of sympathetic trunk (sympathetic paraganglion). Paraganglia has a function, analogic to function of medulla suprarenal gland.

 

Chromaphil or chromaffin cells, so-called because they stain yellow or brownish with chromium salts, are associated with the ganglia of the sympathetic nervous system.

Development.—They arise in common with the sympathetic cells from the neural crest, and are therefore ectodermal in origin. The chromaphil and sympathetic cells are indistinguishable from one another at the time of their migration from the spinal ganglia to the regions occupied in the adult. Differentiation of chromaphil cells begins in embryos about 18 mm. in length but is not complete until about birth. The chromaphiloblasts increase in size more than the sympathoblasts and stain less intensely with ordinary dyes. Later the chrome reaction develops. The aortic bodies differentiate first and are prominent in 20 mm. embryos. The paraganglia of the sympathetic plexuses differentiate next and last of all the paraganglia of the sympathetic trunk. The carotid body is completely differentiated in 30 mm. embryos. After birth the chromaphil organs degenerate but the paraganglia can be recognized with the microscope in sites originally occupied by them.

  The paraganglia are small groups of chromaphil cells connected with the ganglia of the sympathetic trunk and the ganglia of the celiac, renal, suprarenal, aortic and hypogastric plexuses. They are sometimes found in connection with the ganglia of other sympathetic plexuses. None have been found with the sympathetic ganglia associated with the branches of the trigeminal nerve.

  The aortic glands or bodies are the largest of these groups of chromaphil cells and measure in the newborn about 1 cm. in length. They lie one on either side of the aorta in the region of the inferior mesenteric artery. They decrease in size with age and after puberty are only visible with the microscope. About forty they disappear entirely. Other groups of chromaphil cells have been found associated with the sympathetic plexuses of the abdomen independently of the ganglia.

  The medullary portions of the suprarenal glands and the glomus caroticum belong to the chromaphil system.

   Small accessory suprarenals (glandulæ suprarenales accessoriæ) are often to be found in the connective tissue around the suprarenals. The smaller of these, on section, show a uniform surface, but in some of the larger a distinct medulla can be made out.

 

Structure.—On section, the suprarenal gland is seen to consist of two portions (1185): an external or cortical and an internal or medullary. The former constitutes the chief part of the organ, and is of a deep yellow color; the medullary substance is soft, pulpy, and of a dark red or brown color.

  The cortical portion (substantia corticalis) consists of a fine connective-tissue net-work, in which is imbedded the glandular epithelium. The epithelial cells are polyhedral in shape and possess rounded nuclei; many of the cells contain coarse granules, others lipoid globules. Owing to differences in the arrangement of the cells, three distinct zones can be made out: (1) the zona glomerulosa, situated beneath the capsule, consists of cells arranged in rounded groups, with here and there indications of an alveolar structure; the cells of this zone are very granular, and stain deeply. (2) The zona fasciculata, continuous with the zona glomerulosa, is composed of columns of cells arranged in a radial manner; these cells contain finer granules and in many instances globules of lipoid material. (3) The zona reticularis, in contact with the medulla, consists of cylindrical masses of cells irregularly arranged; these cells often contain pigment granules which give this zone a darker appearance than the rest of the cortex.

  The medullary portion (substantia medullaris) is extremely vascular, and consists of large chromaphil cells arranged in a network. The irregular polyhedral cells have a finely granular cystoplasm that are probably concerned with the secretion of adrenalin. In the meshes of the cellular network are large anastomosing venous sinuses (sinusoids) which are in close relationship with the chromaphil or medullary cells. In many places the endothelial lining of the blood sinuses is in direct contact with the medullary cells. Some authors consider the endothelium absent in places and here the medullary cells are directly bathed by the blood. This intimate relationship between the chromaphil cells and the blood stream undoubtedly facilitates the discharge of the internal secretion into the blood. There is a loose meshwork of supporting connective tissue containing non-striped muscle fibers. This portion of the gland is richly supplied with non-medullated nerve fibers, and here and there sympathetic ganglia are found.

 

Опис : G:\gray\henry gray anatomy\www.bartleby.com\107\Images\large\image1185.gif

Section of a part of a suprarenal gland.

 

Vessels and Nerves.—The arteries supplying the suprarenal glands are numerous and of comparatively large size; they are derived from the aorta, the inferior phrenic, and the renal. They subdivide into

minute branches previous to entering the cortical part of the gland, where they break up into capillaries which end in the venous plexus of the medullary portion.

  The suprarenal vein returns the blood from the medullary venous plexus and receives several branches from the cortical substance; it emerges from the hilum of the gland and on the right side opens into the inferior vena cava, on the left into the renal vein.

  The lymphatics end in the lumbar glands.

  The nerves are exceedingly numerous, and are derived from the celiac and renal plexuses, and, according to Bergmann, from the phrenic and vagus nerves. They enter the lower and medial part of the capsule, traverse the cortex, and end around the cells of the medulla. They have numerous small ganglia developed upon them in the medullary portion of the gland.

  In connection with the development of the medulla from the sympathochromaffin tissue, it is to be noted that this portion of the gland secretes a substance, adrenalin, which has a powerful influence on those muscular tissues which are supplied by sympathetic fibers.

 

Glomus Caroticum (Carotid Glands; Carotid Bodies)—The carotid bodies, two in number, are situated one on either side of the neck, behind the common carotid artery at its point of bifurcation into the external and internal carotid trunks. They are reddish brown in color and oval in shape, the long diameter measuring about 5 mm.

 

Опис : G:\gray\henry gray anatomy\www.bartleby.com\107\Images\large\image1186.gif

Section of part of human glomus caroticum. Highly magnified. Numerous bloodvessels are seen in section among the gland cells.

  

Each is invested by a fibrous capsule and consists largely of spherical or irregular masses of cells, the masses being more or less isolated from one another by septa which extend inward from the deep surface of the capsule. The cells are polyhedral in shape, and each contains a large nucleus imbedded in finely granular protoplasm, which is stained yellow by chromic salts. Numerous nerve fibers, derived from the sympathetic plexus on the carotid artery, are distributed throughout the organ, and a net-work of large sinusoidal capillaries ramifies among the cells.

 

Опис : G:\gray\henry gray anatomy\www.bartleby.com\107\Images\large\image1187.gif

Section of an irregular nodule of the glomus coccygeum. (Sertoli.) X 85. The section shows the fibrous covering of the nodule, the bloodvessels within it, and the epithelial cells of which it is constituted.

 

Glomus Coccygeum (Coccygeal Gland or Body; Luschka’s Gland)—The glomus coccygeum is placed in front of, or immediately below, the tip of the coccyx. It is about 2.5 mm. in diameter and is irregularly oval in shape; several smaller nodules are found around or near the main mass.

  It consists of irregular masses of round or polyhedral cells, the cells of each mass being grouped around a dilated sinusoidal capillary vessel. Each cell contains a large round or oval nucleus, the protoplasm

surrounding which is clear, and is not stained by chromic salts.

 

The Hypophysis (pituitary body) is a small reddish-gray body, about 1 cm. in diameter, attached to the end of the infundibulum of the brain and resting in the hypophyseal fossa.

 

Опис : G:\gray\henry gray anatomy\www.bartleby.com\107\Images\large\image1180.gif

The hypophysis cerebri in position. Shown in sagittal section.

 

Опис : G:\gray\henry gray anatomy\www.bartleby.com\107\Images\large\image1181.gif

Median sagittal through the hypophysis of an adult monkey. Semidiagrammatic.

 

  The hypophysis consists of an anterior and a posterior lobe, which differ from one another in their mode of development and in their structure (1181). The anterior lobe is the larger and is somewhat kidney-shaped, the concavity being directed backward and embracing the posterior lobe. It consists of a pars anterior and a pars intermedia, separated from each other by a narrow cleft, the remnant of the pouch or diverticulum. The pars anterior is extremely vascular and consists of epithelial cells of varying size and shape, arranged in cord-like trabeculæ or alveoli and separated by large, thin-walled bloodvessels. The pars intermedia is a thin lamina closely applied to the body and neck of the posterior lobe and extending onto the neighboring parts of the brain; it contains few bloodvessels and consists of finely granular cells between which are small masses of colloid material. The pars intermedia in spite of the fact that it arises in common with the pars anterior from the ectoderm of the primitive buccal cavity is often considered as a part of the posterior lobe which arises from the floor of the third ventricle of the brain. Although of nervous origin the posterior lobe contains no nerve cells or fibers. It consists of neuroglia cells and fibers and is invaded by columns which grow into it from the pars intermedia; imbedded in it are large quantities of a colloid substance histologically similar to that found in the thyroid gland. In certain of the lower vertebrates, e.g., fishes, nervous structures are present, and the lobe is of large size.

 

Опис : G:\gray\henry gray anatomy\www.bartleby.com\107\Images\large\image1182.gif

Vertical sections of the heads of early embryos of the rabbit. Magnified. (From Mihalkovics.) A. From an embryo 5 mm. long. B. From an embryo 6 mm. long. C. Vertical section of the anterior end of the notochord and hypophysis, etc., from an embryo 16 mm. long. In A the buccopharyngeal membrane is still present. In B it is in the process of disappearing, and the stomodeum now communicates with the primitive pharynx. am. Amnion. c. Fore-brain. ch. Notochord. f. Anterior extremity of fore-gut, i. h. Heart. if. Infundibulum. m. Wall of brain cavity. mc. Mid-brain. mo. Hind-brain. p. Original position of hypophyseal diverticulum, py. ph. Pharynx. sp.e. Sphenoethmoidal. bc. Central. sp.o. Sphenoöccipital parts of basis cranii. tha. Thalamus.

 

  From the pars intermedia a substance, no doubt an internal secretion, causes constriction of the bloodvessels with rise of arterial blood-pressure. This substance seems to have a stimulating effect on most of the smooth muscles, acting directly upon the muscle causing contraction. It also increases the secretion of the urine; of the mammary glands when in functional activity; and of the cerebrospinal fluid. Extracts of this lobe also influence the general metabolism of the carbohydrates by accelerating the process of glycogenolysis in the liver.

  The pars anterior exercises a stimulating effect on the growth of the skeleton and probably on connective tissues in general.

  Enlargement of the hypophysis and of the cavity of the sella turcica are found in the rare disease acromegaly, which is characterized by gradual enlargement of the face, hands, and feet, with headache and often a peculiar type of blindness. This blindness is due to the pressure of the enlarging hypophysis on the optic chiasma.

 

VIDEO

 

Development of the Hypophysis Cerebri.—This in the adult consists of a large anterior, consisting of the pars anterior and the pars intermedia, and a small posterior lobe: the former is derived from the ectoderm of the stomodeum, the latter from the floor of the fore-brain. About the fourth week there appears a pouchlike diverticulum of the ectodermal lining of the roof of the stomodeum. This diverticulum, pouch of Rathke (1182), is the rudiment of the anterior lobe of the hypophysis; it extends upward in front of the cephalic end of the notochord and the remnant of the buccopharyngeal membrane, and comes into contact with the under surface of the fore-brain. It is then constricted off to form a closed vesicle, but remains for a time connected to the ectoderm of the stomodeum by a solid cord of cells. Masses of epithelial cells form on either side and in the front wall of the vesicle, and by the growth between these of a stroma from the mesoderm the development of the anterior lobe is completed. The upwardly directed hypophyseal involution becomes applied to the antero-lateral aspect of a downwardly directed diverticulum from the base of the fore-brain (page 744). This diverticulum constitutes the future infundibulum in the floor of the third ventricle while its inferior extremity becomes modified to form the posterior lobe of the hypophysis. In some of the lower animals the posterior lobe contains nerve cells and nerve fibers, but in man and the higher vertebrates these are replaced by connective tissue. A canal, craniopharyngeal canal, is sometimes found extending from the anterior part of the fossa hypophyseos of the sphenoid bone to the under surface of the skull, and marks the original position of Rathke’s pouch; while at the junction of the septum of the nose with the palate traces of the stomodeal end are occasionally present

 

The Pineal body (epiphysis) is a small reddish-gray body, about 8 mm. in length which lies in the depression between the superior colliculi. It is attached to the roof of the third ventricle near its junction with the mid-brain. It develops as an outgrowth from the third ventricle of the brain.

  In early life it has a glandular structure which reaches its greatest development at about the seventh year. Later, especially after puberty, the glandular tissue gradually disappears and is replaced by connective tissue.

 

Structure.—The pineal body is destitute of nervous substance, and consists of follicles lined by epithelium and enveloped by connective tissue. These follicles contain a variable quantity of gritty material, composed of phosphate and carbonate of calcium, phosphate of magnesium and ammonia, and a little animal matter.

  It contains a substance which if injected intravenously causes fall of blood-pressure. It seems probable that the gland furnishes an internal secretion in children that inhibits the development of the reproductive glands since the invasion of the gland in children, by pathological growths which practically destroy the glandular tissue, results in accelerated development of the sexual organs, increased growth of the skeleton and precocious mentality.

 

 

Theme 2. Anatomy of the immune system

The Thymus is a central organ of immune system, which is situated in anterior mediastinum on level of the 4th ribs behind manubrium sterni. Behind thymus pericardium is situated. Thymus gland consists of lobes - right and left, which have the lobule that built by cortex and medulla of thymus gland. In medulla Т-lymphocyte matter acquire that peculiarities which contribute to protective function.

The thymus is a temporary organ, attaining its largest size at the time of puberty (Hammar), when it ceases to grow, gradually dwindles, and almost disappears. If examined when its growth is most active, it will be found to consist of two lateral lobes placed in close contact along the middle line, situated partly in the thorax, partly in the neck, and extending from the fourth costal cartilage upward, as high as the lower border of the thyroid gland. It is covered by the sternum, and by the origins of the Sternohyoidei and Sternothyreoidei. Below, it rests upon the pericardium, being separated from the aortic arch and great vessels by a layer of fascia. In the neck it lies on the front and sides of the trachea, behind the Sternohyoidei and Sternothyreoidei. The two lobes generally differ in size; they are occasionally united, so as to form a single mass; and sometimes separated by an intermediate lobe. The thymus is of a pinkish-gray color, soft, and lobulated on its surfaces. It is about 5 cm. in length, 4 cm. in breadth below, and about 6 mm. in thickness. At birth it weighs about 15 grams, at puberty it weighs about 35 grams; after this it gradually decreases to 25 grams at twentyfive years, less than 15 grams at sixty, and about 6 grams at seventy years.

Опис : G:\gray\henry gray anatomy\www.bartleby.com\107\Images\large\image1178.gif

The thymus of a full-time fetus, exposed in situ.

 

 

Development.—The thymus appears in the form of two flask-shaped entodermal diverticula, which arise, one on either side, from the third branchial pouch (1175), and extend lateralward and backward into the surrounding mesoderm in front of the ventral aortæ. Here they meet and become joined to one another by connective tissue, but there is never any fusion of the thymus tissue proper. The pharyngeal opening of each diverticulum is soon obliterated, but the neck of the flask persists for some time as a cellular cord. By further proliferation of the cells lining the flask, buds of cells are formed, which become surrounded and isolated by the invading mesoderm. In the latter, numerous lymphoid cells make their appearance, and are agregated to form lymphoid follicles. These lymphoid cells are probably derivatives of the entodermal cells which lined the original diverticula and their subdivisions. Additional portions of thymus tissue are sometimes developed from the fourth branchial pouches. Thymus continues to grow until the time of puberty and then begins to atrophy.

Опис : G:\gray\henry gray anatomy\www.bartleby.com\107\Images\large\image1179.gif

Minute structure of thymus. Follicle of injected thymus from calf, four days old, slightly diagrammatic, magnified about 50 diameters. The large vessels are disposed in two rings, one of which surrounds the follicle, the other lies just within the margin of the medulla. (Watney.) A and B. From thymus of camel, examined without addition of any reagent. Magnified about 400 diameters. A. Large colorless cell, containing small oval masses of hemoglobin. Similar cells are found in the lymph glands, spleen, and medulla of bone. B. Colored blood corpuscles.

 

 

Structure.—Each lateral lobe is composed of numerous lobules held together by delicate areolar tissue; the entire gland being enclosed in an investing capsule of a similar but denser structure. The primary lobules vary in size from that of a pin’s head to that of a small pea, and are made up of a number of small nodules or follicles, which are irregular in shape and are more or less fused together, especially toward the interior of the gland. Each follicle is from 1 to 2 mm. in diameter and consists of a medullary and a cortical portion, and these differ in many essential particulars from each other. The cortical portion is mainly composed of lymphoid cells, supported by a network of finely branched cells, which is continuous with a similar network in the medullary portion. This network forms an adventitia to the bloodvessels. In the medullary portion the reticulum is coarser than in the cortex, the lymphoid cells are relatively fewer in number, and there are found peculiar nest-like bodies, the concentric corpuscles of Hassall. These concentric corpuscles are composed of a central mass, consisting of one or more granular cells, and of a capsule which is formed of epithelioid cells (1179). They are the remains of the epithelial tubes which grow out from the third branchial pouches of the embryo to form the thymus.

  Each follicle is surrounded by a vascular plexus, from which vessels pass into the interior, and radiate from the periphery toward the center, forming a second zone just within the margin of the medullary portion. In the center of the medullary portion there are very few vessels, and they are of minute size.

  Watney has made the important observation that hemoglobin is found in the thymus, either in cysts or in cells situated near to, or forming part of, the concentric corpuscles. This hemo globin occurs as granules or as circular masses exactly resembling colored blood corpuscles. He has also discovered, in the lymph issuing from the thymus, similar cells to those found in the gland, and, like them, containing hemoglobin in the form of either granules or masses. From these facts he arrives at the conclusion that the gland is one source of the colored blood corpuscles. More recently Schaffer has observed actual nucleated red-blood corpuscles in the thymus. The function of the thymus is obscure. It seems to furnish during the period of growth an internal secretion concerned with some phases of body metabolism, especially that of the sexual glands.

 

Vessels and Nerves.—The arteries supplying the thymus are derived from the internal mammary, and from the superior and inferior thyroids. The veins end in the left innominate vein, and in the thyroid veins. The lymphatics are described on page 698. The nerves are exceedingly minute; they are derived from the vagi and sympathetic. Branches from the descendens hypoglossi and phrenic reach the investing capsule, but do not penetrate into the substance of the gland.

 

 



The spleen (Lien)

is situated principally in the left hypochondriac region, but its superior extremity extends into the epigastric region; it lies between the fundus of the stomach and the diaphragm. It is the largest of the ductless glands, and is of an oblong, flattened form, soft, of very friable consistence, highly vascular, and of a dark purplish color.

 

Development.—The spleen appears about the fifth week as a localized thickening of the mesoderm in the dorsal mesogastrium above the tail of the pancreas. With the change in position of the stomach the spleen is carried to the left, and comes to lie behind the stomach and in contact with the left kidney. The part of the dorsal mesogastrium which intervened between the spleen and the greater curvature of the stomach forms the gastrosplenic ligament.

 

Relations.—The diaphragmatic surface (facies diaphragmatica; external or phrenic surface) is convex, smooth, and is directed upward, backward, and to the left, except at its upper end, where it is directed slightly medialward. It is in relation with the under surface of the diaphragm, which separates it from the ninth, tenth, and eleventh ribs of the left side, and the intervening lower border of the left lung and pleura.

Опис : G:\gray\henry gray anatomy\www.bartleby.com\107\Images\large\image1188.gif

The visceral surface of the spleen.

 

VIDEO

  The visceral surface (1188) is divided by a ridge into an anterior or gastric and a posterior or renal portion.

  The gastric surface (facies gastrica), which is directed forward, upward, and medialward, is broad and concave, and is in contact with the posterior wall of the stomach; and below this with the tail of the pancreas. It presents near its medial border a long fissure, termed the hilum. This is pierced by several irregular apertures, for the entrance and exit of vessels and nerves.

  The renal surface (facies renalis) is directed medialward and downward. It is somewhat flattened, is considerably narrower than the gastric surface, and is in relation with the upper part of the anterior surface of the left kidney and occasionally with the left suprarenal gland.

  The superior extremity (extremitas superior) is directed toward the vertebral column, where it lies on a level with the eleventh thoracic vertebra. The lower extremity or colic surface (extremitas inferior) is flat, triangular in shape, and rests upon the left flexure of the colon and the phrenicocolic ligament, and is generally in contact with the tail of the pancreas. The anterior border (margo anterior) is free, sharp, and thin, and is often notched, especially below; it separates the diaphragmatic from the gastric surface. The posterior border (margo posterior), more rounded and blunter than the anterior, separates the renal from the diaphragmatic surface; it corresponds to the lower border of the eleventh rib and lies between the diaphragm and left kidney. The intermediate margin is the ridge which separates the renal and gastric surfaces. The inferior border (internal border) separates the diaphragmatic from the colic surface.

  The spleen is almost entirely surrounded by peritoneum, which is firmly adherent to its capsule. It is held in position by two folds of this membrane. One, the phrenicolienal ligament, is derived from the peritoneum, where the wall of the general peritoneal cavity comes into contact with the omental bursa between the left kidney and the spleen; the lienal vessels pass between its two layers (1039). The other fold, the gastrolienal ligament, is also formed of two layers, derived from the general cavity and the omental respectively, where they meet between the spleen and stomach (1039); the short gastric and left gastroepiploic branches of the lienal artery run between its two layers. The lower end of the spleen is supported by the phrenicocolic ligament (see page 1155).

  The size and weight of the spleen are liable to very extreme variations at different periods of life, in different individuals, and in the same individual under different conditions. In the adult it is usually about 12 cm. in length, 7 cm. in breadth, and 3 or 4 cm. in thickness, and weighs about 200 grams. At birth its weight, in proportion to the entire body, is almost equal to what is observed in the adult, being as 1 to 350; while in the adult it varies from 1 to 320 and 400. In old age the organ not only diminishes in weight, but decreases considerably in proportion to the entire body, being as 1 to 700. The size of the spleen is increased during and after digestion, and varies according to the state of nutrition of the body, being large in highly fed, and small in starved animals. In malarial fever it becomes much enlarged, weighing occasionally as much as 9 kilos.

  Frequently in the neighborhood of the spleen, and especially in the gastrolienal ligament and greater omentum, small nodules of splenic tissue may be found, either isolated or connected to the spleen by thin bands of splenic tissue. They are known as accessory spleens (lien accessorius; supernumerary spleen). They vary in size from that of a pea to that of a plum.

 

Structure.—The spleen is invested by two coats: an external serous and an internal fibroelastic coat.

  The external or serous coat (tunica serosa) is derived from the peritoneum; it is thin, smooth, and in the human subject intimately adherent to the fibroelastic coat. It invests the entire organ, except at the hilum and along the lines of reflection of the phrenicolienal and gastrolienal ligaments.

  The fibroelastic coat (tunica albuginea) invests the organ, and at the hilum is reflected inward upon the vessels in the form of sheaths. From these sheaths, as well as from the inner surface of the fibroelastic coat, numerous small fibrous bands, trabeculæ (1189), are given off in all directions; these uniting, constitute the frame-work of the spleen. The spleen therefore consists of a number of small spaces or areolæ, formed by the trabeculæ; in these areolæ is contained the splenic pulp.

  The fibroelastic coat, the sheaths of the vessels, and the trabeculæ, are composed of white and yellow elastic fibrous tissues, the latter predominating. It is owing to the presence of the elastic tissue that the spleen possesses a considerable amount of elasticity, which allows of the very great variations in size that it presents under certain circumstances. In addition to these constituents of this tunic, there is found in man a small amount of non-striped muscular fiber; and in some mammalia, e. g., dog, pig, and cat, a large amount, so that the trabeculæ appear to consist chiefly of muscular tissue.

Опис : G:\gray\henry gray anatomy\www.bartleby.com\107\Images\large\image1189.gif

Transverse section of the spleen, showing the trabecular tissue and the splenic vein and its tributaries.

 

Опис : G:\gray\henry gray anatomy\www.bartleby.com\107\Images\large\image1190.gif

Transverse section of the human spleen, showing the distribution of the splenic artery and its branches.

Опис : G:\gray\henry gray anatomy\www.bartleby.com\107\Images\large\image1190.gif

  The splenic pulp (pulpa lienis) is a soft mass of a dark reddish-brown color, resembling grumous blood; it consists of a fine reticulum of fibers, continuous with those of the trabeculæ, to which are applied flat, branching cells. The meshes of the reticulum are filled with blood, in which, however, the white corpuscles are found to be in larger proportion than they are in ordinary blood. Large rounded cells, termed splenic cells, are also seen; these are capable of ameboid movement, and often contain pigment and red-blood corpuscles in their interior. The cells of the reticulum each possess a round or oval nucleus, and like the splenic cells, they may contain pigment granules in their cytoplasm; they do not stain deeply with carmine, and in this respect differ from the cells of the Malpighian bodies. In the young spleen, giant cells may also be found, each containing numerous nuclei or one compound nucleus. Nucleated red-blood corpuscles have also been found in the spleen of young animals.

 

Bloodvessels of the Spleen.—The lienal artery is remarkable for its large size in proportion to the size of the organ, and also for its tortuous course. It divides into six or more branches, which enter the hilum of the spleen and ramify throughout its substance (1190), receiving sheaths from an involution of the external fibrous tissue. Similar sheaths also invest the nerves and veins.

  Each branch runs in the transverse axis of the organ, from within outward, diminishing in size during its transit, and giving off in its passage smaller branches, some of which pass to the anterior, others to the posterior part. These ultimately leave the trabecular sheaths, and terminate in the proper substance of the spleen in small tufts or pencils of minute arterioles, which open into the interstices of the reticulum formed by the branched sustentacular cells. Each of the larger branches of the artery supplies chiefly that region of the organ in which the branch ramifies, having no anastomosis with the majority of the other branches.

  The arterioles, supported by the minute trabeculæ, traverse the pulp in all directions in bundles (pencilli) of straight vessels. Their trabecular sheaths gradually undergo a transformation, become much thickened, and converted into adenoid tissue; the bundles of connective tissue becoming looser and their fibrils more delicate, and containing in their interstices an abundance of lymph corpuscles (W. Müller).

Опис : G:\gray\henry gray anatomy\www.bartleby.com\107\Images\large\image1191.gif

Transverse section of a portion of the spleen.

 

  The altered coat of the arterioles, consisting of adenoid tissue, presents here and there thickenings of a spheroidal shape, the lymphatic nodules (Malpighian bodies of the spleen). These bodies vary in size from about 0.25 mm. to 1 mm. in diameter. They are merely local expansions or hyperplasiæ of the adenoid tissue, of which the external coat of the smaller arteries of the spleen is formed. They are most frequently found surrounding the arteriole, which thus seems to tunnel them, but occasionally they grow from one side of the vessel only, and present the appearance of a sessile bud growing from the arterial wall. In transverse sections, the artery, in the majority of cases, is found in an eccentric position. These bodies are visible to the naked eye on the surface of a fresh section of the organ, appearing as minute dots of a semiopaque whitish color in the dark substance of the pulp. In minute structure they resemble the adenoid tissue of lymph glands, consisting of a delicate reticulum, in the meshes of which lie ordinary lymphoid cells (1191). The reticulum is made up of extremely fine fibrils, and is comparatively open in the center of the corpuscle, becoming closer at its periphery. The cells which it encloses are possessed of ameboid movement. When treated with carmine they become deeply stained, and can be easily distinguished from those of the pulp.

  The arterioles end by opening freely into the splenic pulp; their walls become much attenuated, they lose their tubular character, and the endothelial cells become altered, presenting a branched appearance, and acquiring processes which are directly connected with the processes of the reticular cells of the pulp (1192). In this manner the vessels end, and the blood flowing through them finds its way into the interstices of the reticulated tissue of the splenic pulp. Thus the blood passing through the spleen is brought into intimate relation with the elements of the pulp, and no doubt undergoes important changes.

  After these changes have taken place the blood is collected from the interstices of the tissue by the rootlets of the veins, which begin much in the same way as the arteries end. The connective-tissue corpuscles of the pulp arrange themselves in rows, in such a way as to form an elongated space or sinus. They become elongated and spindle-shaped, and overlap each other at their extremities, and thus form a sort of endothelial lining of the path or sinus, which is the radicle of a vein. On the outer surfaces of these cells are seen delicate transverse lines or markings, which are due to minute elastic fibrillæ arranged in a circular manner around the sinus. Thus the channel obtains an external investment, and gradually becomes converted into a small vein, which after a short course acquires a coat of ordinary connective tissue, lined by a layer of flattened epithelial cells which are continuous with the supporting cells of the pulp.

Опис : G:\gray\henry gray anatomy\www.bartleby.com\107\Images\large\image1192.gif

Section of the spleen, showing the termination of the small bloodvessels.

 

  The smaller veins unite to form larger ones; these do not accompany the arteries, but soon enter the trabecular sheaths of the capsule, and by their junction form six or more branches, which emerge from the hilum, and, uniting, constitute the lienal vein, the largest radicle of the portal vein. The veins are remarkable for their numerous anastomoses, while the arteries hardly anastomose at all.

 

 

Theme 3. Anatomy of the spinal cord.

     Nervous system may be divided into two parts, central and peripheral, also somatic and autonomic. The central nervous system consists of the brain [encephalon], contained within the cranium, and the medulla spinalis or spinal cord, lodged in the vertebral canal. The peripheral nervous system consists of a series of cranial and spinal nerves. Autonomic nervous system has a parasympathetic and sympathetic parts.

Spinal cord is located in vertebral canal and extends inferiorly from the position of the foramen magnum of the occipital bone to the level of the first-second lumbar vertebra. The terminal portion of the spinal cord is called the conus medullaris and filum terminale extends inferiorly from it to the level second coccyx vertebrae. The cervical enlargement is

located at the level of 6th cervical vertebrae, and the lumbosacral enlargement at the level of 12th thoracic vertebrae. The Central Canal (canalis centralis) runs throughout the entire length of the medulla spinalis. It is continued upward and opens into the fourth ventricle of the brain. In the lower part of the conus medullaris it exhibits a fusiform dilatation, the terminal ventricle.

Опис : G:\gray\henry gray anatomy\www.bartleby.com\107\Images\large\image663.gif

Diagrams of the medulla spinalis.

 

The medulla spinalis or spinal cord forms the elongated, nearly cylindrical, part of the central nervous system which occupies the upper two-thirds of the vertebral canal. Its average length in the male is about 45 cm., in the female from 42 to 43 cm., while its weight amounts to about 30 gms. It extends from the level of the upper border of the atlas to that of the lower border of the first, or upper border of the second, lumbar vertebra. Above, it is continuous with the brain; below, it ends in a conical extremity, the conus medullaris, from the apex of which a delicate filament, the filum terminale, descends as far as the first segment of the coccyx .

The position of the medulla spinalis varies with the movements of the vertebral column, its lower extremity being drawn slightly upward when the column is flexed. It also varies at different periods of life; up to the third month of fetal life the medulla spinalis is as long as the vertebral canal, but from this stage onward the vertebral column elongates more rapidly than the medulla spinalis, so that by the end of the fifth month the medulla spinalis terminates at the base of the sacrum, and at birth about the third lumbar vertebra.

Опис : G:\gray\henry gray anatomy\www.bartleby.com\107\Images\large\image662.gif

Cauda equina and filum terminale seen from behind. The dura mater has been opened and spread out, and the arachnoid has been removed.

 

The medulla spinalis does not fill the part of the vertebral canal in which it lies; it is ensheathed by three protective membranes, separated from each other by two concentric spaces. The three membranes are named from without inward, the dura mater, the arachnoid, and the pia mater. The dura mater is a strong, fibrous membrane which forms a wide, tubular sheath; this sheath extends below the termination of the medulla spinalis and ends in a pointed cul-de-sac at the level of the lower border of the second sacral vertebra. The dura mater is separated from the wall of the vertebral canal by the epidural cavity, which contains a quantity of loose areolar tissue and a plexus of veins; between the dura mater and the subjacent arachnoid is a capillary interval, the subdural cavity, which contains a small quantity of fluid, probably of the nature of lymph. The arachnoid is a thin, transparent sheath, separated from the pia mater by a comparatively wide interval, the subarachnoid cavity, which is filled with cerebrospinal fluid. The pia mater closely invests the medulla spinalis and sends delicate septa into its substance; a narrow band, the ligamentum denticulatum, extends along each of its lateral surfaces and is attached by a series of pointed processes to the inner surface of the dura mater.

Опис : G:\gray\henry gray anatomy\www.bartleby.com\107\Images\large\image661.gif

Sagittal section of vertebral canal to show the lower end of the medulla spinalis and the filum terminale. Li, Lv. First and fifth lumbar vertebræ. Sii. Second sacral vertebra. 1. Dura mater. 2. Lower part of tube of dura mater. 3. Lower extremity of medulla spinalis. 4. Intradural, and 5, Extradural portions of filum terminale. 6. Attachment of filum terminale to first segment of coccyx.

 

Thirty-one pairs of spinal nerves spring from the medulla spinalis, each nerve having an anterior or ventral, and a posterior or dorsal root, the latter being distinguished by the presence of an oval swelling, the spinal ganglion, which contains numerous nerve cells. Each root consists of several bundles of nerve fibers, and at its attachment extends for some distance along the side of the medulla spinalis. The pairs of spinal nerves are grouped as follows: cervical 8, thoracic 12, lumbar 5, sacral 5, coccygeal 1, and, for convenience of description, the medulla spinalis is divided into cervical, thoracic, lumbar and sacral regions, corresponding with the attachments of the different groups of nerves.

Enlargements.—The medulla spinalis is not quite cylindrical, being slightly flattened from before backward; it also presents two swellings or enlargements, an upper or cervical, and a lower or lumbar.

The cervical enlargement is the more pronounced, and corresponds with the attachments of the large nerves which supply the upper limbs. It extends from about the third cervical to the second thoracic vertebra, its maximum circumference (about 38 mm.) being on a level with the attachment of the sixth pair of cervical nerves.

The lumbar enlargement gives attachment to the nerves which supply the lower limbs. It commences about the level of the ninth thoracic vertebra, and reaches its maximum circumference, of about 33 mm., opposite the last thoracic vertebra, below which it tapers rapidly into the conus medullaris.

The Anterior Median Fissure (fissura mediana anterior) has an average depth of about

3 mm., but this is increased in the lower part of the medulla spinalis. It contains a double fold of pia mater, and its floor is formed by a transverse band of white substance, the anterior white commissure, which is perforated by bloodvessels on their way to or from the central part of the medulla spinalis.

The Posterior Median Sulcus (sulcus medianus posterior) is very shallow; from it a septum of neuroglia reaches rather more than half-way into the substance of the medulla spinalis; this septum varies in depth from 4 to 6 mm., but diminishes considerably in the lower part of the medulla spinalis.

On either side of the posterior median sulcus, and at a short distance from it, the posterior nerve roots are attached along a vertical furrow named the posterolateral sulcus. The portion of the medulla spinalis which lies between this and the posterior median sulcus is named the posterior funiculus. In the cervical and upper thoracic regions this funiculus presents a longitudinal furrow, the postero-intermediate sulcus; this marks the position of a septum which extends into the posterior funiculus and subdivides it into two fasciculi—a medial, named the fasciculus gracilis (tract of Goll); and a lateral, the fasciculus cuneatus (tract of Burdach). The portion of the medulla spinalis which lies in front of the posterolateral sulcus is termed the antero-lateral region. The anterior nerve roots, unlike the posterior, are not attached in linear series, and their position of exit is not marked by a sulcus. They arise by separate bundles which spring from the anterior column of gray substance and, passing forward through the white substance, emerge over an area of some slight width. The most lateral of these bundles is generally taken as a dividing line which separates the antero-lateral region into two parts, viz., an anterior funiculus, between the anterior median fissure and the most lateral of the anterior nerve roots; and a lateral funiculus, between the exit of these roots and the postero-lateral sulcus. In the upper part of the cervical region a series of nerve roots passes outward through the lateral funiculus of the medulla spinalis; these unite to form the spinal portion of the accessory nerve, which runs upward and enters the cranial cavity through the foramen magnum.

Gray Substance (substantia grisea centralis).—The gray substance consists of two symmetrical portions, one in each half of the medulla spinalis: these are joined across the middle line by a transverse commissure of gray substance, through which runs a minute canal, the central canal, just visible to the naked eye. In a transverse section each half of the gray substance is shaped like a comma or crescent, the concavity of which is directed laterally; and these, together with the intervening gray commissure, present the appearance of the letter H. An imaginary coronal plane through the central canal serves to divide each crescent into an anterior or ventral, and a posterior or dorsal column.

The Anterior Column (columna anterior; anterior cornu), directed forward, is broad and of a rounded or quadrangular shape. Its posterior part is termed the base, and its anterior part the head, but these are not differentiated from each other by any well-defined constriction. It is separated from the surface of the medulla spinalis by a layer of white substance which is traversed by the bundles of the anterior nerve roots. In the thoracic region, the postero-lateral part of the anterior column projects lateralward as a triangular field, which is named the lateral column (columna lateralis; lateral cornu).

The Posterior Column (columna posterior; posterior cornu) is long and slender, and is directed backward and lateralward: it reaches almost as far as the posterolateral sulcus, from which it is separated by a thin layer of white substance, the tract of Lissauer. It consists of a base, directly continuous with the base of the anterior horn, and a neck or slightly constricted portion, which is succeeded by an oval or fusiform area, termed the head, of which the apex approaches the posterolateral sulcus. The apex is capped by a V-shaped or crescentic mass of translucent, gelatinous neuroglia, termed the substantia gelatinosa of Rolando, which contains both neuroglia cells, and small nerve cells. Between the anterior and posterior columns the gray substance extends as a series of processes into the lateral funiculus, to form a net-work called the formatio reticularis.

The anterior median fissure (fissura mediana anterior) and right and left anterolateral sulcuses located on anterior surface of the spinal cord. Posterior median sulcus (sulcus medianus posterior) and also right

and left posterolateral sulcus located on back surface of the spinal cord.

Each spinal nerve is attached to the medulla spinalis by two roots, an anterior or ventral (motor and sympathetic fibbers), and a posterior or dorsal, the being characterized by the presence of a ganglion, the spinal ganglion (with sensory pseudounipolar cells).

Опис : G:\gray\henry gray anatomy\www.bartleby.com\107\Images\large\image675.gif

A spinal nerve with its anterior and posterior roots.

 

After emerging from the intervertebral foramen, each spinal nerve gives off a small meningeal branch which supplies the dura mater, and an anterior or ventral, posterior or dorsal divisions, also white and gray communicating branches for nearest sympathetic ganglion (in thoracic-lumbar part).

levels.

 

The medulla spinalis is ensheathed by three protective membranes, separated from each other by two concentric spaces:

1. The Dura mater

2. The Arachnoid

3. The Pia mater

The dura mater is separated from the wall of the vertebral canal

by the epidural cavity, which contains a quantity of fat tissue and a plexus of veins. Between the dura mater and the subjacent arachnoid is a capillary interval, the subdural cavity, which contains a small quantity of fluid, probably of the nature of lymph. The arachnoid is a thin, transparent sheath, separated from the pia mater by a comparatively wide interval, the subarachnoid cavity, which is filled with cerebrospinal fluid. The pia mater closely invests the medulla spinalis and sends delicate septa into its substance; a narrow band, the ligamentum denticulatum, extends along each of its lateral surfaces and is attached by a series of pointed processes to the inner surface of the dura mater.

 

 

 

Structure

Location/Description

Notes

arachnoid mater

intermediate one of the three layers of meninges

arachnoid mater is a thin membrane which is pressed against the inner surface of the dura mater by cerebrospinal fluid pressure; arachnids are spiders, the space deep to this layer (subarachnoid space) has a spider web-like appearance

denticulate ligament

a lateral extension of pia mater from the spinal cord

denticulate ligament attaches to the dura mater to anchor the spinal cord; it forms a scalloped free border; there are 2 (one on each side)

dura mater

outermost of the meningeal layers covering the brain and spinal cord

"tough mother"; it is the most durable of the meninges and provides support and protection for the brain and spinal cord; two types are described which differ in structure: cranial and spinal

dura mater, spinal

outermost covering of the spinal cord, it forms the dural sac containing the spinal cord within vertebral canal

dural sac ends at S2, coccygeal ligament (filum terminale externum) continues inferiorly to attach to coccyx

epidural fat

loose connective tissue within the epidural space

epidural space

the space external to the sac of spinal dura mater within the vertebral canal

the epidural space contains epidural fat and the internal vertebral plexus of veins which is valveless (clinically relevant)

filum terminale internum

thread-like extension of the pia mater from the conus medullaris of the spinal cord

filum terminale internum is best seen between vertebral levels L2 and S2; it becomes enclosed within the filum terminale externum

filum terminale externum

thread-like extension of the dura mater below the end of the dural sac at S2

it attaches to the coccyx; also known as the coccygeal ligament

meninges

three layers of connective tissue covering the brain and spinal cord; dura mater, arachnoid mater, and pia mater

meninges provide protection and nourishment of the brain, brainstem and spinal cord

pia mater

delicate membrane that lies on surface of the brain and spinal cord

"delicate mother", it is the most delicate of the meninges; this layer faithfully follows all surface contours of the brain and spinal cord; pia mater has 2 specializations: denticulate ligament and filum terminale internum

subdural space

the space between the dura mater and the arachnoid mater

this is a potential space only; the pressure of CSF in the subarachnoid space pushes arachnoid against dura

subarachnoid space

the space between the arachnoid and the pia mater

subarachnoid space contains cerebrospinal fluid and spider web-like filaments

cauda equina

dorsal and ventral roots of all spinal nerves inferior to L1

lies within the lumbar cistern

conus medullaris

cone-shaped inferior end of the spinal cord; located at vertebral level L1

at birth, the conus medullaris is at the level of L2/L3

cervical enlargement

vertebral level C4 through T1

created by the rootlets of spinal nerves C5-T1 that form the brachial plexus

lumbrosacral enlargement

vertebral level T11 through L1

Created by the rootlets of spinal nerves L1-S4 that form the lumbosacral plexus

 

 

Spinal cord consists of the gray substance that is surrounded by the white substance. Posterior median sulcus passes to the gray substance and divides by the white substance into two parts. Anterior median fissure does not pass to the gray substance so it is white commisura that connect anterior symmetrical regions of the white matter.

The gray substance is largely composed of nervous cell bodies. The gray substance consists of anterior, posterior and lateral columns (only in thoracic-lumbar portion) also central intermediate

zone round central canal. In transverse section columns are looking as horns, so they differ anterior, posterior and lateral horns.

 

Опис : G:\gray\henry gray anatomy\www.bartleby.com\107\Images\large\image664.gif

Transverse section of the medulla spinalis in the mid-thoracic region.

 

Anterior horns contain motor cells that arranged in 5 motor nuclei (nucleus anterior [medial and lateral], central nucleus and posterior [medial and lateral] nuclei). Their axons form anterior roots that pass with spinal nerves to the skeletal muscles of the trunk and limbs. Posterior horns contain intermediate cells. They receive impulse from sensory cells and carry them to the another cell. Intermediate cells form the spongious zone, gelatinous substance, proper nucleus and thoracic nucleus (Clarc-Steiling column).

Lateral columns in thoracic-lumbar portion contain autonomic cells that form lateral intermediate nucleus. In intermediate central part medial intermediate nucleus carry intermediate cells.

White substance contains only neuron long processes (axons), the nerve fibbers which form ascending (sensory, afferent) and descending (motor, efferent) pathways. White substance divided by sulcuses and is arranged in three funiculi: anterior, lateral, and posterior. Both anterior funiculi are communicated each other by white commisura. 

Fasciculi in the Posterior Funiculus comprises the fasciculus gracilis [tract of Goll] (lies next the posterior median septum) and the fasciculus cuneatus [tract of Burdach] (laterally). They conduct impulses of conscious muscle sense.

Pathways in the Anterior Funiculus (descending): anterior corticospinal [pyramidal] tract, tectospinal tract, reticulospinal tract, olivospinal tract, and vestibulospinal tract. Ascending pathway  - anterior spinothalamic tract.

 

Опис : G:\gray\henry gray anatomy\www.bartleby.com\107\Images\large\image672.gif

Diagram of the principal fasciculi of the spinal cord.

 

Ascending pathways in the Lateral Funiculus:

·        dorsal spinocerebellar tract (tract of Flechsig)

·        ventral spinocerebellar tract (tract of Gowers)

·        lateral spinothalamic

·        tract

Medially they can find descending pathways:

·        corticospinal [pyramidal] tract

·        rubrospinal tract (of Monakow)

 

 

Portion of the spinal cord that carries two pairs of ventral and dorsal roots or one pair of spinal nerves called segment. There are 8 cervical, 12 thoracic, 5 lumbar, 5 sacral and 1 coccygeal segments. Roots which exit from the spinal cord lower then second lumbar segment form together with the filum termanale cauda equina.

Gray Substance (substantia grisea centralis).—The gray substance consists of two symmetrical portions, one in each half of the medulla spinalis: these are joined across the middle line by a transverse commissure of gray substance, through which runs a minute canal, the central canal, just visible to the naked eye. In a transverse section each half of the gray substance is shaped like a comma or crescent, the concavity of which is directed laterally; and these, together with the intervening gray commissure, present the appearance of the letter H. An imaginary coronal plane through the central canal serves to divide each crescent into an anterior or ventral, and a posterior or dorsal column.

  The Anterior Column (columna anterior; anterior cornu), directed forward, is broad and of a rounded or quadrangular shape. Its posterior part is termed the base, and its anterior part the head, but these are not differentiated from each other by any well-defined constriction. It is separated from the surface of the medulla spinalis by a layer of white substance which is traversed by the bundles of the anterior nerve roots. In the thoracic region, the postero-lateral part of the anterior column projects lateralward as a triangular field, which is named the lateral column (columna lateralis; lateral cornu).

  The Posterior Column (columna posterior; posterior cornu) is long and slender, and is directed backward and lateralward: it reaches almost as far as the posterolateral sulcus, from which it is separated by a thin layer of white substance, the tract of Lissauer. It consists of a base, directly continuous with the base of the anterior horn, and a neck or slightly constricted portion, which is succeeded by an oval or fusiform area, termed the head, of which the apex approaches the posterolateral sulcus. The apex is capped by a V-shaped or crescentic mass of translucent, gelatinous neuroglia, termed the substantia gelatinosa of Rolando, which contains both neuroglia cells, and small nerve cells. Between the anterior and posterior columns the gray substance extends as a series of processes into the lateral funiculus, to form a net-work called the formatio reticularis.

  The quantity of gray substance, as well as the form which it presents on transverse section, varies markedly at different levels. In the thoracic region it is small, not only in amount but relatively to the surrounding white substance. In the cervical and lumbar enlargements it is greatly increased: in the latter, and especially in the conus medullaris, its proportion to the white substance is greatest (665). In the cervical region its posterior column is comparatively narrow, while its anterior is broad and expanded; in the thoracic region, both columns are attenuated, and the lateral column is evident; in the lumbar enlargement, both are expanded; while in the conus medullaris the gray substance assumes the form of two oval masses, one in each half of the cord, connected together by a broad gray commissure.

  The Central Canal (canalis centralis) runs throughout the entire length of the medulla spinalis. The portion of gray substance in front of the canal is named the anterior gray commissure; that behind it, the posterior gray commissure. The former is thin, and is in contact anteriorly with the anterior white commissure: it contains a couple of longitudinal veins, one on either side of the middle line. The posterior gray commissure reaches from the central canal to the posterior median septum, and is thinnest in the thoracic region, and thickest in the conus medullaris. The central canal is continued upward through the lower part of the medulla oblongata, and opens into the fourth ventricle of the brain; below, it reaches for a short distance into the filum terminale. In the lower part of the conus medullaris it exhibits a fusiform dilatation, the terminal ventricle; this has a vertical measurement of from 8 to 10 mm., is triangular on cross-section with its base directed forward, and tends to undergo obliteration after the age of forty years.

  Throughout the cervical and thoracic regions the central canal is situated in the anterior third of the medulla spinalis; in the lumbar enlargement it is near the middle, and in the conus medullaris it approaches the posterior surface. It is filled with cerebrospinal fluid, and lined by ciliated, columnar epithelium, outside of which is an encircling band of gelatinous substance, the substantia gelatinosa centralis. This gelatinous substance consists mainly of neuroglia, but contains a few nerve cells and fibers; it is traversed by processes from the deep ends of the columnar ciliated cells which line the central canal (667).

Structure of the Gray Substance.—The gray substance consists of numerous nerve cells and nerve fibers held together by neuroglia. Throughout the greater part of the gray substance the neuroglia presents the appearance of a sponge-like network, but around the central canal and on the apices of the posterior columns it consists of the gelatinous substance already referred to. The nerve cells are multipolar, and vary greatly in size and shape. They consist of (1) motor cells of large size, which are situated in the anterior horn, and are especially numerous in the cervical and lumbar enlargements; the axons of most of these cells pass out to form the anterior nerve roots, but before leaving the white substance they frequently give off collaterals, which reënter and ramify in the gray substance. 113 (2) Cells of small or medium size, whose axons pass into the white matter, where some pursue an ascending, and others a descending course, but most of them divide in a T-shape manner into descending and ascending processes. They give off collaterals which enter and ramify in the gray substance, and the terminations of the axons behave in a similar manner. The lengths of these axons vary greatly: some are short and pass only between adjoining spinal segments, while others are longer and connect more distant segments. These cells and their processes constitute a series of association or intersegmental neurons (668), which link together the different parts of the medulla spinalis. The axons of most of these cells are confined to that side of the medulla spinalis in which the nerve cells are situated, but some cross to the opposite side through the anterior commissure, and are termed crossed commissural fibers. Some of these latter end directly in the gray substance, while others enter the white substance, and ascend or descend in it for varying distances, before finally terminating in the gray substance. (3) Cells of the type II of Golgi, limited for the most part to the posterior column, are found also in the substantia gelatinosa of Rolando; their axons are short and entirely confined to the gray substance, in which they break up into numerous fine filaments. Most of the nerve cells are arranged in longitudinal columns, and appear as groups on transverse section (Figs. 669, 670, 671).

Опис : G:\gray\henry gray anatomy\www.bartleby.com\107\Images\large\image666.gif

Transverse sections of the medulla spinalis at different

Nerve Cells in the Anterior Column.—The nerve cells in the anterior column are arranged in columns of varying length. The longest occupies the medial part of the anterior column, and is named the antero-medial column: it is well marked in C4, C5, again from C8 to L4, it disappears in L5 and S1 but is well marked in S2, S3 and S4 (Bruce). 114 Behind it is a dorso-medial column of small cells, which is not represented in L5, S1, S2 nor below S4. Its axons probably pass into the dorsal rami of the spinal nerves to supply the dorsal musculature of the spinal column. In the cervical and lumbar enlargements, where the anterior column is expanded in a lateral direction, the following additional columns are present, viz.: (a) antero-lateral, which consists of two groups, one in C4, C5, C6 the other in C6, C7, C8 in the cervical enlargement and of a group from L2 to S2 in the lumbo-sacral enlargement; (b) postero-lateral, in the lower five cervical, lower four lumbar, and upper three sacral segments; (c) post-postero-lateral, in the last cervical, first thoracic, and upper three sacral segments; and (d) a central, in the lower four lumbar and upper two sacral segments. These cell groups are evidently related to the nerve roots of the brachial and sacral plexuses and supply fibers to the muscles of the arm and leg. Throughout the base of the anterior column are scattered solitary cells, the axons of some of which form crossed commissural fibers, while others constitute the motor fibers of the posterior nerve roots. (See footnote, page 755.)

Nerve Cells in the Lateral Column.—These form a column which is best marked where the lateral gray column is differentiated, viz., in the thoracic region; 115 but it can be traced throughout the entire length of the medulla spinalis in the form of groups of small cells which are situated in the anterior part of the formatio reticularis. In the upper part of the cervical region and lower part of the medulla oblongata as well as in the third and fourth sacral segments this column is again differentiated. In the medulla it is known as the lateral nucleus. The cells of this column are fusiform or star-shaped, and of a medium size: the axons of some of them pass into the anterior nerve roots, by which they are carried to the sympathetic nerves: they constitute the white rami and are sympathetic or visceral efferent fibers; they are also known as preganglionic fibers of the sympathetic system; the axons of others pass into the anterior and lateral funiculi, where they become longitudinal.

 Nerve Cells in the Posterior Column.—1. The dorsal nucleus (nucleus dorsalis; column of Clarke) occupies the medial part of the base of the posterior column, and appears on the transverse section as a well-defined oval area. It begins below at the level of the second or third lumbar nerve, and reaches its maximum size opposite the twelfth thoracic nerve. Above the level of the ninth thoracic nerve its size diminishes, and the column ends opposite the last cervical or first thoracic nerve. It is represented, however, in the other regions by scattered cells, which become aggregated to form a cervical nucleus opposite the third cervical nerve, and a sacral nucleus in the middle and lower part of the sacral region. Its cells are of medium size, and of an oval or pyriform shape; their axons pass into the peripheral part of the lateral funiculus of the same side, and there ascend, probably in dorsal spinocerebellar (direct cerebellar) fasciculus. 2. The nerve cells in the substantia gelatinosa of Rolando are arranged in three zones: a posterior or marginal, of large angular or fusiform cells; an intermediate, of small fusiform cells; and an anterior, of star-shaped cells. The axons of these cells pass into the lateral and posterior funiculi, and there assume a vertical course. In the anterior zone some Golgi cells are found whose short axons ramify in the gray substance. 3. Solitary cells of varying form and size are scattered throughout the posterior column. Some of these are grouped to form the posterior basal column in the base of the posterior column, lateral to the dorsal nucleus; the posterior basal column is well-marked in the gorilla (Waldeyer), but is ill-defined in man. The axons of its cells pass partly to the posterior and lateral funiculi of the same side, and partly through the anterior white commissure to the lateral funiculus of the opposite side. Golgi cells, type II, located in this region send axons to the lateral and ventral columns.

  A few star-shaped or fusiform nerve cells of varying size are found in the substantia gelatinosa centralis. Their axons pass into the lateral funiculus of the same, or of the opposite side.

  The nerve fibers in the gray substance form a dense interlacement of minute fibrils among the nerve cells. This interlacement is formed partly of axons which pass from the cells in the gray substance to enter the white funiculi or nerve roots; partly of the axons of Golgi’s cells which ramify only in the gray substance; and partly of collaterals from the nerve fibers in the white funiculi which, as already stated, enter the gray substance and ramify within it.

 

White Substance (substantia alba).—The white substance of the medulla spinalis consists of medullated nerve fibers imbedded in a spongelike net-work of neuroglia, and is arranged in three funiculi: anterior, lateral, and posterior. The anterior funiculus lies between the anterior median fissure and the most lateral of the anterior nerve roots: the lateral funiculus between these nerve roots and the postero-lateral sulcus; and the posterior funiculus between the postero-lateral and the posterior median sulci (672). The fibers vary greatly in thickness, the smallest being found in the fasciculus gracilis, the tract of Lissauer, and inner part of the lateral funiculus; while the largest are situated in the anterior funiculus, and in the peripheral part of the lateral funiculus. Some of the nerve fibers assume a more or less transverse direction, as for example those which cross from side to side in the anterior white commissure, but the majority pursue a longitudinal course and are divisible into (1) those connecting the medulla spinalis with the brain and conveying impulses to or from the latter, and (2) those which are confined to the medulla spinalis and link together its different segments, i. e., intersegmental or association fibers.

 

Nerve Fasciculi.—The longitudinal fibers are grouped into more or less definite bundles or fasciculi. These are not recognizable from each other in the normal state, and their existence has been determined by the following methods: (1) A. Waller discovered that if a bundle of nerve fibers be cut, the portions of the fibers which are separated from their cells rapidly degenerate and become atrophied, while the cells and the parts of the fibers connected with them undergo little alteration. 116 This is known as Wallerian degeneration. Similarly, if a group of nerve cells be destroyed, the fibers arising from them undergo degeneration. Thus, if the motor cells of the cerebral cortex be destroyed, or if the fibers arising from these cells be severed, a descending degeneration from the seat of injury takes place in the fibers. In the same manner, if a spinal ganglion be destroyed, or the fibers which pass from it into the medulla spinalis be cut, an ascending degeneration will extend along these fibers. (2) Pathological changes, especially in man, have given important information by causing ascending and descending degenerations. (3) By tracing the development of the nervous system, it has been observed that at first the nerve fibers are merely naked axis-cylinders, and that they do not all acquire their medullary sheaths at the same time; hence the fibers can be grouped into different bundles according to the dates at which they receive their medullary sheaths. (4) Various methods of staining nervous tissue are of great value in tracing the course and mode of termination of the axis-cylinder processes.

Fasciculi in the Anterior Funiculus.—Descending Fasciculi.—The anterior cerebrospinal (fasciculus cerebrospinalis anterior; direct pyramidal tract), which is usually small, but varies inversely in size with the lateral cerebrospinal fasciculus. It lies close to the anterior median fissure, and is present only in the upper part of the medulla spinalis; gradually diminishing in size as it descends, it ends about the middle of the thoracic region. It consists of descending fibers which arise from cells in the motor area of the cerebral hemisphere of the same side, and which, as they run downward in the medulla spinalis, cross in succession through the anterior white commissure to the opposite side, where they end, either directly or indirectly, by arborizing around the motor cells in the anterior column. A few of its fibers are said to pass to the lateral column of the same side and to the gray matter at the base of the posterior column. They conduct voluntary motor impulses from the precentral gyrus to the motor centers of the cord.

  The vestibulospinal fasciculus, situated chiefly in the marginal part of the funiculus and mainly derived from the cells of Deiters’ nucleus, of the same and the opposite side, i. e., the chief terminal nucleus of the vestibular nerve. Fibers are also contributed to this fasciculus from scattered cells of the articular formation of the medulla oblongata, the pons and the mid-brain (tegmentum). The other terminal nuclei of the vestibular nerve also contribute fibers. In the brain stem these fibers form part of the median longitudinal bundle. The fasciculus can be traced to the sacral region. Its terminals and collaterals end either directly or indirectly among the motor cells of the anterior column. This fasciculus is probably concerned with equilibratory reflexes.

  The tectospinal fasciculus, situated partly in the anterior and partly in the lateral funiculus, is mainly derived from the opposite superior colliculus of the mid-brain. The fibers from the superior colliculus cross the median raphé in the fountain decussation of Meynert and descend as the ventral longitudinal bundle in the reticular formation of the brain-stem. Its collaterals and terminals end either directly or indirectly among the motor cells of the anterior column of the same side. Since the superior colliculus is an important visual reflex center, the tectospinal fasciculus is probably concerned with visual reflexes.

  Ascending Fasciculi.—The ventral spinothalamic fasciculus, situated in the marginal part of the funiculus and intermingled more or less with the vestibulo-spinal fasciculus, is derived from cells in the posterior column or intermediate gray matter of the opposite side. Their axons cross in the anterior commissure. This is a somewhat doubtful fasciculus and its fibers are supposed to end in the thalamus and to conduct certain of the touch impulses.

  The remaining fibers of the anterior funiculus constitute what is termed the anterior proper fasciculus (fasciculus anterior proprius; anterior basis bundle). It consists of (a) longitudinal intersegmental fibers which arise from cells in the gray substance, more especially from those of the medial group of the anterior column, and, after a longer or shorter course, reënter the gray substance; (b) fibers which cross in the anterior white commissure from the gray substance of the opposite side.

 

Fasciculi in the Lateral Funiculus.—1. Descending Fasciculi.—(a) The lateral cerebrospinal fasciculus (fasciculus cerebrospinalis lateralis; crossed pyramidal tract) extends throughout the entire length of the medulla spinalis, and on transverse section appears as an oval area in front of the posterior column and medial to the cerebellospinal. Its fibers arise from cells in the motor area of the cerebral hemisphere of the opposite side. They pass downward in company with those of the anterior cerebrospinal fasciculus through the same side of the brain as that from which they originate, but they cross to the opposite side in the medulla oblongata and descend in the lateral funiculus of the medulla spinalis.

  It is probable 117 that the fibers of the anterior and lateral cerebrospinal fasciculi are not related in this direct manner with the cells of the anterior column, but terminate by arborizing around the cells at the base of the posterior column and the cells of Clarke’s column, which in turn link them to the motor cells in the anterior column, usually of several segments of the cord. In consequence of these interposed neurons the fibers of the cerebrospinal fasciculi correspond not to individual muscles, but to associated groups of muscles.

  The anterior and lateral cerebrospinal fasciculi constitute the motor fasciculi of the medulla spinalis and have their origins in the motor cells of the cerebral cortex. They descend through the internal capsule of the cerebrum, traverse the cerebral peduncles and pons and enter the pyramid of the medulla oblongata. In the lower part of the latter about two-thirds of them cross the middle line and run downward in the lateral funiculus as the lateral cerebrospinal fasciculus, while the remaining fibers do not cross the middle line, but are continued into the same side of the medulla spinalis, where they form the anterior cerebrospinal fasciculus. The fibers of the latter, however, cross the middle line in the anterior white commissure, and thus all the motor fibers from one side of the brain ultimately reach the opposite side of the medulla spinalis. The proportion of fibers which cross in the medulla oblongata is not a constant one, and thus the anterior and lateral cerebrospinal fasciculi vary inversely in size. Sometimes the former is absent, and in such cases it may be presumed that the decussation of the motor fibers in the medulla oblongata has been complete. The fibers of these two fasciculi do not acquire their medullary sheaths until after birth. In some animals the motor fibers are situated in the posterior funiculus.

  (b) The rubrospinal fasciculus (Monakow) (prepyramidal tract), lies on the ventral aspect of the lateral cerebrospinal fasciculus and on transverse section appears as a somewhat triangular area. Its fibers descend from the mid-brain, where they have their origin in the red nucleus of the tegmentum of the opposite side. Its terminals and collaterals end either directly or indirectly in relation with the motor cells of the anterior column. The rubrospinal fasciculus is supposed to be concerned with cerebellar reflexes since fibers which pass from the cerebellum through the superior peduncle send many collaterals and terminals to the red nucleus.

  (c) The olivospinal fasciculus (Helweg) arises in the vicinity of the inferior olivary nucleus in the medulla oblongata, and is seen only in the cervical region of the medulla spinalis, where it forms a small triangular area at the periphery, close to the most lateral of the anterior nerve roots. Its exact origin and its mode of ending have not yet been definitely made out.

  2. Ascending Fasciculi.—(a) The dorsal spinocerebellar fasciculus (fasciculus cerebellospinalis; direct cerebellar tract of Flechsig) is situated at the periphery of the posterior part of the lateral funiculus, and on transverse section appears as a flattened band reaching as far forward as a line drawn transversely through the central canal. Medially, it is in contact with the lateral cerebrospinal fasciculus, behind, with the fasciculus of Lissauer. It begins about the level of the second or third lumbar nerve, and increasing in size as it ascends, passes to the vermis of the cerebellum through the inferior peduncle. Its fibers are generally regarded as being formed by the axons of the cells of the dorsal nucleus (Clarke’s column); they receive their medullary sheaths about the sixth or seventh month of fetal life. Its fibers are supposed to conduct impulses of unconscious muscle sense.

  The superficial antero-lateral fasciculus (tract of Gowers) consists of four fasciculi, the ventral spinocerebellar, the lateral spinothalamic, the spinotectal and the ventral spinothalamic.

  (b) The ventral spinocerebellar fasciculus (Gowers) skirts the periphery of the lateral funiculus in front of the dorsal spinocerebellar fasciculus. In transverse section it is shaped somewhat like a comma, the expanded end of which lies in front of the dorsal spinocerebellar fasciculus while the tail reaches forward into the anterior funiculus. Its fibers come from the same but mostly from the opposite side of the medulla spinalis and cross both in the anterior white commissure and in the gray commissure; they are probably derived from the cells of the dorsal nucleus and from other cells of the posterior column and the intermediate portion of the gray matter. The ventral spinocerebellar fasciculus begins about the level of the third pair of lumbar nerves, and can be followed into the medulla oblongata and pons almost to the level of the inferior colliculus where it crosses over the superior peduncle and then passes backward along its medial border to reach the vermis of the cerebellum. In the pons it lies along the lateral edge of the lateral lemniscus. Some of its fibers join the dorsal spinocerebellar fasciculus at the level of the inferior peduncle and pass with them into the cerebellum. Other fibers are said to continue upward in the dorso-lateral part of the tegmentum of the mid-brain probably as far as the thalamus.

  (c) The lateral spinothalamic fasciculus is supposed to come from cells in the dorsal column and the intermediate gray matter whose axons cross in the anterior commissure to the opposite lateral funiculus where they pass upward on the medial side of the ventral spinocerebellar fasciculus; on reaching the medulla oblongata they continue in the formatio reticularis near the median fillet and probably terminate in the ventro-lateral region of the thalamus. It is supposed to conduct impulses of pain and temperature. The lateral and ventral spinothalamic fasciculi are sometimes termed the secondary sensory fasciculus or spinal lemniscus.

  (d) The spinotectal fasciculus is supposed to arise in the dorsal column and terminate in the (inferior ?) and superior colliculi. It is situated ventral to the lateral spinothalamic fasciculus, but its fibers are more or less intermingled with it. It is also known as the spino-quadrigeminal system of Mott. In the brain-stem the fibers run lateral from the inferior olive, ventro-lateral from the superior olive, then ventro-medial from the spinal tract of the trigeminal; the fibers come to lie in the medial portion of the lateral lemniscus.

  (e) The fasciculus of Lissauer is a small strand situated in relation to the tip of the posterior column close to the entrance of the posterior nerve roots. It consists of fine fibers which do not receive their medullary sheaths until toward the close of fetal life. It is usually regarded as being formed by some of the fibers of the posterior nerve roots, which ascend for a short distance in the tract and then enter the posterior column, but since its fibers are myelinated later than those of the posterior nerve roots, and do not undergo degeneration in locomotor ataxia, they are probably intersegmental in character.

  In addition the fasciculus or tract of Lissauer contains great numbers of fine non-medullated fibers derived mostly from the dorsal roots but partly endogenous in origin. These fibers are intimately related to the substantia gelatinosa which is probably the terminal nucleus. The non-medullated fibers ascend or descend for short distances not exceeding one or two segments, but most of them enter the substantia gelatinosa at or near the level of their origin. Ransom 118 suggests that these non-medullated fibers and the substantia gelatinosa are concerned with the reflexes associated with pain impulses.

  (f) The lateral proper fasciculus (fasciculus lateralis proprius; lateral basis bundle) constitutes the remainder of the lateral column, and is continuous in front with the anterior proper fasciculus. It consists chiefly of intersegmental fibers which arise from cells in the gray substance, and, after a longer or shorter course, reënter the gray substance and ramify in it. Some of its fibers are, however, continued upward into the brain under the name of the medial longitudinal fasciculus.

 

Fasciculi in the Posterior Funiculus.—This funiculus comprises two main fasciculi, viz., the fasciculus gracilis, and the fasciculus cuneatus. These are separated from each other in the cervical and upper thoracic regions by the postero-intermediate septum, and consist mainly of ascending fibers derived from the posterior nerve roots.

  The fasciculus gracilis (tract of Goll) is wedge-shaped on transverse section, and lies next the posterior median septum, its base being at the surface of the medulla spinalis, and its apex directed toward the posterior gray commissure. It increases in size from below upward, and consists of long thin fibers which are derived from the posterior nerve roots, and ascend as far as the medulla oblongata, where they end in the nucleus gracilis.

  The fasciculus cuneatus (tract of Burdach) is triangular on transverse section, and lies between the fasciculus gracilis and the posterior column, its base corresponding with the surface of the medulla spinalis. Its fibers, larger than those of the fasciculus gracilis, are mostly derived from the same source, viz., the posterior nerve roots. Some ascend for only a short distance in the tract, and, entering the gray matter, come into close relationship with the cells of the dorsal nucleus; while others can be traced as far as the medulla oblongata, where they end in the gracile and cuneate nuclei.

 The fasciculus gracilis and fasciculus cuneatus conduct (1) impulses of conscious muscle sense, neurons of the second order from the nucleus gracilis and nucleus cuneatus, pass in the median lemniscus to the thalamus and neurons of the third order from the thalamus to the cerebral cortex; (2) impulses of unconscious muscle sense, via neurons of the second order from the nucleus gracilis and nucleus cuneatus pass in the internal and external arcuate fibers of the medulla oblongata to the inferior peduncle and through it to the cerebellum; (3) impulses of tactile discrimination, via neurons of the second order from the nucleus cuneatus and nucleus gracilis pass in the median lemniscus to the thalamus, neurons of the third order pass from the thalamus to the cortex.

  The Posterior Proper Fasciculus (posterior ground bundle; posterior basis bundle) arises from cells in the posterior column; their axons bifurcate into ascending and descending branches which occupy the ventral part of the funiculus close to the gray column. They are intersegmental and run for varying distances sending off collaterals and terminals to the gray matter.

  Some descending fibers occupy different parts at different levels. In the cervical and upper thoracic regions they appear as a comma-shaped fasciculus in the lateral part of the fasciculus cuneatus, the blunt end of the comma being directed toward the posterior gray commissure; in the lower thoracic region they form a dorsal peripheral band on the posterior surface of the funiculus; in the lumbar region, they are situated by the side of the posterior median septum, and appear on section as a semi-elliptical bundle, which, together with the corresponding bundle of the opposite side, forms the oval area of Flechsig; while in the conus medullaris they assume the form of a triangular strand in the postero-medial part of the fasciculus gracilis. These descending fibers are mainly intersegmental in character and derived from cells in the posterior column, but some consist of the descending branches of the posterior nerve roots. The comma-shaped fasciculus was supposed to belong to the second category, but against this view is the fact that it does not undergo descending degeneration when the posterior nerve roots are destroyed.

 

Roots of the Spinal Nerves.—As already stated, each spinal nerve possesses two roots, an anterior and a posterior, which are attached to the surface of the medulla spinalis opposite the corresponding column of gray substance (675); their fibers become medullated about the fifth month of fetal life.

  The Anterior Nerve Root (radix anterior) consists of efferent fibers, which are the axons of the nerve cells in the ventral part of the anterior and lateral columns. A short distance from their origins, these axons are invested by medullary sheaths and, passing forward, emerge in two or three irregular rows over an area which measures about 3 mm. in width.

  The Posterior Root (radix posterior) comprises some six or eight fasciculi, attached in linear series along the postero-lateral sulcus. It consists of afferent fibers which arise from the nerve cells in a spinal ganglion. Each ganglion cell gives off a single fiber which divides in a T-shaped manner into two processes, medial and lateral. The lateral processes extend to the sensory end-organs of the skin, muscles, tendons, joints, etc. (somatic receptors), and to the sensory end-organs of the viscera (visceral receptors). The medial processes of the ganglion cells grow into the medulla spinalis as the posterior roots of the spinal nerves.

  The posterior nerve root enters the medulla spinalis in three chief bundles, medial, intermediate, and lateral. The medial strand passes directly into the fasciculus cuneatus: it consists of coarse fibers, which acquire their medullary sheaths about the fifth month of intrauterine life; the intermediate strand consists of coarse fibers, which enter the gelatinous substance of Rolando; the lateral is composed of fine fibers, which assume a longitudinal direction in the tract of Lissauer, and do not acquire their medullary sheaths until after birth. In addition to these medullated fibers there are great numbers of non-medullated fibers which enter with the lateral bundle. They are more numerous than the myelinated fibers. They arise from the small cells of the spinal ganglia by T-shaped axons similar to the myelinated. They are distributed with the peripheral nerves chiefly to the skin, only a few are found in the nerves to the muscles. 119

  Having entered the medulla spinalis, all the fibers of the posterior nerve roots divide into ascending and descending branches, and these in their turn give off collaterals which enter the gray substance (676). The descending fibers are short, and soon enter the gray substance. The ascending fibers are grouped into long, short, and intermediate: the long fibers ascend in the fasciculus cuneatus and fasciculus gracilis as far as the medulla oblongata, where they end by arborizing around the cells of the cuneate and gracile nuclei; the short fibers run upward for a distance of only 5 or 6 mm. and enter the gray substance; while the intermediate fibers, after a somewhat longer course, have a similar destination. All fibers entering the gray substance end by arborizing around its nerve cells or the dendrites of cells, those of intermediate length being especially associated with the cells of the dorsal nucleus.

  The long fibers of the posterior nerve roots pursue an oblique course upward, being situated at first in the lateral part of the fasciculus cuneatus: higher up, they occupy the middle of this fasciculus, having been displaced by the accession of other entering fibers; while still higher, they ascend in the fasciculus gracilis. The upper cervical fibers do not reach this fasciculus, but are entirely confined to the fasciculus cuneatus. The localization of these fibers is very precise: the sacral nerves lie in the medial part of the fasciculus gracilis and near its periphery, the lumbar nerves lateral to them, the thoracic nerves still more laterally; while the cervical nerves are confined to the fasciculus cuneatus.

Prepared by

Galytska-Harhalis O.Ya.