Topography and structure of

urinary system organs



The urinary system (Figure 26-1aView a text illustration) includes the kidneys, ureters, urinary bladder, and urethra. The excretory functions of the urinary system are performed by the two kidneys. These organs produce urine, a fluid containing water, ions, and small soluble compounds. Urine leaving the kidneys travels along the paired ureters to the urinary bladder for temporary storage. Urine excretion, a process called urination, or micturition, occurs when the contraction of the muscular urinary bladder forces urine through the urethra and out of the body.


THE KIDNEYSView an additional photo

The kidneys are located on either side of the vertebral column between vertebrae T12 and L3. The left kidney lies slightly superior to the right kidney (Figure 26-1a,bView a text illustration).


On gross dissection, the anterior surface of the right kidney is covered by the liver, the right colic (hepatic) flexure of the colon, and the duodenum. The anterior surface of the left kidney is covered by the stomach, pancreas, jejunum, and left colic (splenic) flexure of the colon. The superior surface of each kidney is capped by an adrenal gland (Figures 26-1a,bView a text illustration and 26-2aView a text illustration, bView a text illustration). The kidneys and adrenal glands lie between the muscles of the dorsal body wall and the parietal peritoneum in a retroperitoneal position (Figure 26-1cView a text illustration).


The position of the kidneys in the abdominal cavity is maintained by (1) the overlying peritoneum, (2) contact with adjacent visceral organs, and (3) supporting connective tissues. Each kidney is protected and stabilized by three concentric layers of connective tissue (Figure 26-1cView a text illustration):

1.     The renal capsule is a layer of collagen fibers that covers the outer surface of the entire organ. This layer is also known as the fibrous tunic of the kidney.

2.     The adipose capsule, a layer of adipose tissue, surrounds the renal capsule. This layer can be quite thick, and on dissection it generally obscures the outline of the kidney.

3.     The renal fascia is a dense outer layer. Collagen fibers extend outward from the renal capsule through the adipose capsule to this layer. The renal fascia anchors the kidney to surrounding structures. Posteriorly, the renal fascia fuses with the deep fascia surrounding the muscles of the body wall. Anteriorly, the renal fascia forms a thick fibrous layer that fuses with the peritoneum.

4.     TF_2601C

In effect, each kidney hangs suspended by collagen fibers from the renal fascia and packed in a soft cushion of adipose tissue. This arrangement prevents the jolts and shocks of day-to-day existence from disturbing normal kidney function. If the suspensory fibers break or become detached, a slight bump or jar may displace the kidney and stress the attached vessels and ureter. This condition, called a floating kidney, can be especially dangerous, because the ureters or renal blood vessels may become twisted or kinked during movement.

Superficial Anatomy of the Kidneys

Each reddish brown kidney has the shape of a kidney bean. A typical adult kidney (Figures 26-2aView a text illustration, bView a text illustration and 26-3View a text illustration) is about 10 cm (4 in.) in length, 5.5 cm (2.2 in.) in width, and 3 cm (1.2 in.) in thickness. Each kidney weighs about 150 g (5.25 oz). The hilus, a prominent medial indentation, is the point of entry for the renal artery and renal nerves and the point of exit for the renal vein and ureter.

Sectional Anatomy of the Kidneys

The fibrous renal capsule has inner and outer layers. In sectional view (Figure 26-3aView a text illustration View an additional photo), the inner layer folds inward at the hilus and lines an internal cavity, the renal sinus. Renal blood vessels and the ureter draining the kidney pass through the hilus and branch within the renal sinus. A thickened, outer layer of the capsule extends across the hilus and stabilizes the position of these structures.


The renal cortex is the outer layer of the kidney in contact with the capsule. The cortexView an additional photo is reddish brown and granular in texture. The renal medulla consists of 6 to 18 distinct conical or triangular structures called renal pyramids. The base of each pyramid faces the cortex, and the tip of each pyramid, a region known as the renal papilla, projects into the renal sinus. Each pyramid has a series of fine grooves that converge at the papilla. Adjacent renal pyramids are separated by bands of cortical tissue called renal columns, which extend into the medulla. The columns have a distinctly granular texture, similar to that of the cortex. A renal lobe consists of a renal pyramid, the overlying area of renal cortex, and adjacent tissues of the renal columns.

Urine production occurs in the renal lobes. Ducts within each renal papilla discharge urine into a cup-shaped drain called a minor calyx. Four or five minor calyces merge to form a major calyx, and two or three major calyces combine to form the renal pelvis, a large, funnel-shaped chamber. The renal pelvis, which fills most of the renal sinus, is connected to the ureter at the hilus of the kidney.

Urine production begins in microscopic structures called nephrons in the cortex of each renal lobe. There are roughly 1.25 million nephrons in each kidney, with a combined length of about 145 km (85 miles).

The Nephron

Each nephron consists of a renal corpuscle and a renal tubule roughly 50 mm long. The renal tubule begins at the renal corpuscle, a cup-shaped chamber (Figure 26-4View a text illustration). The renal corpuscle is approximately 200 µm (0.2 mm) in diameter. It contains a capillary network called the glomerulus (plural, glomeruli), which consists of about 50 intertwining capillaries. Blood arrives at the glomerulus via the afferent arteriole and departs in the efferent arteriole. Filtration occurs in the renal corpuscle as blood pressure forces fluid and dissolved solutes out of the glomerular capillaries and into the capsular space. Filtration produces an essentially protein-free solution, known as a filtrate, that is otherwise very similar to blood plasma.


From the renal corpuscle, the filtrate enters a long tubular passageway. The renal tubule has two convoluted (coiled or twisted) segments--the proximal convoluted tubule (PCT) and the distal convoluted tubule (DCT)--separated by a simple U-shaped tube, the loop of Henle. The convoluted segments are in the cortex, and the loop extends partially or completely into the medulla. For clarity, the nephron diagrammed in Figure 26-4View a text illustration has been shortened and straightened. The regions of the nephron vary in their structural and functional characteristics. As it travels along the tubule, the filtrate, now called tubular fluid, gradually changes in composition. The changes that occur and the characteristics of the urine that results vary with the activities under way in each segment of the nephron; Figure 26-4View a text illustration provides an overview of the regional specializations.

Each nephron empties into the collecting system. A connecting tubule carries the tubular fluid from the distal convoluted tubule to a nearby collecting duct. The collecting duct, which receives tubular fluid from many different nephrons, leaves the cortex and descends into the medulla, carrying fluid to a papillary duct that drains into a minor calyx.

The urine arriving at the renal pelvis is very different from the filtrate produced at the renal corpuscle. Filtration is a passive process that permits or prevents movement across a barrier solely on the basis of solute size. A filter with pores large enough to permit the passage of organic waste products is unable to prevent the passage of water, ions, and other organic molecules, such as glucose, fatty acids, and amino acids. These useful substances must be reclaimed and the waste products excreted. The segments of the nephron distal to the renal corpuscle are responsible for:

Additional water and salts will be removed from the tubular fluid in the collecting system before the fluid is released into the renal sinus as urine. Table 26-1 gives an overview of important information concerning the regions of the nephron and collecting system.

Nephrons differ slightly in structure, depending on their location. Roughly 85 percent of all nephrons are cortical nephrons; they are located in the superficial cortex of the kidney. The remaining 15 percent of nephrons, termed juxtamedullary nephrons (juxta, near), are located closer to the medulla. Because they are more numerous than juxtamedullary nephrons, cortical nephrons perform most of the reabsorptive and secretory functions of the kidneys. However, the juxtamedullary nephrons are responsible for the ability to produce a concentrated urine.

We shall now examine the structure of each segment of a representative nephron.

The Renal Corpuscle

The renal corpuscle (Figure 26-5a,b,cView a text illustration) has a diameter averaging 150-250 µm. It includes (1) the glomerular capillary network and (2) a region known as Bowman's capsule. Connected to the initial segment of the renal tubule, Bowman's capsule forms the outer wall of the renal corpuscle and covers the glomerular capillaries.


Bowman'S Capsule
The glomerulus projects into Bowman's capsule much as the heart projects into the pericardial cavity (Figure 26-5c
View a text illustration). The outer wall of the capsule is lined by a simple squamous parietal epithelium (capsular epithelium). This layer is continuous with the visceral epithelium (glomerular epithelium) that covers the glomerular capillaries. The visceral epithelium consists of large cells with complex processes, or "feet," that wrap around the lamina densa, the specialized basement membrane of the glomerular capillaries (Figure 26-5cView a text illustration, eView a text illustration). These unusual cells are called podocytes (podos, foot + -cyte, cell). The podocyte feet are known as pedicels. Materials passing out of the blood at the glomerulus must be small enough to pass between the narrow gaps, or filtration slits, between adjacent pedicels. These slits are small enough to prevent the loss of all but the smallest plasma proteins.


The capsular space separates the visceral and parietal epithelia (Figures 26-4View a text illustration,and 26-5b,cView a text illustration). The connection between the two epithelial layers lies at the vascular pole of the renal corpuscle. At the vascular pole, blood flows into and out of the glomerular capillaries. Blood arrives in an afferent arteriole and departs in an efferent arteriole.

The Glomerular Capillaries
The glomerular capillaries (Figure 26-5c
View a text illustration) are fenestrated capillaries whose endothelium contains large-diameter pores. The openings are small enough to prevent the passage of blood cells but too large to restrict the diffusion of dissolved or suspended compounds, even those the size of plasma proteins.

The endothelial cells lining the capillaries are surrounded by the lamina densa (Figure 26-5eView a text illustration). During filtration, the lamina densa restricts the passage of large plasma proteins but permits the movement of smaller molecules, including albumin, many organic nutrients, and ions. Unlike basement membranes elsewhere, the lamina densa may encircle two or more capillaries. When it does, mesangial cells are situated between the capillaries. Mesangial cells have several important functions:

Together, the fenestrated endothelium, the lamina densa, and the filtration slits form the filtration membrane. During filtration, blood pressure forces water and small solutes across this membrane and into the capsular space. The larger solutes, especially plasma proteins, are excluded. Filtration at the renal corpuscle is both effective and passive, but it has one major limitation: In addition to metabolic wastes and excess ions, compounds such as glucose, free fatty acids, amino acids, vitamins, and other solutes enter the capsular space. These potentially useful materials are recaptured before the filtrate leaves the kidneys, with much of the reabsorption occurring in the proximal convoluted tubule.

The Proximal Convoluted Tubule

The entrance to the proximal convoluted tubule (PCT) lies almost directly opposite the vascular pole, at the tubular pole of the renal corpuscle (Figure 26-5cView a text illustration). The lining of the PCT consists of a simple cuboidal epithelium whose exposed surfaces are blanketed with microvilli (Figure 26-4View a text illustration). The cuboidal tubular cells actively absorb organic nutrients, ions, and plasma proteins (if any) from the tubular fluid and release them into the peritubular fluid, the interstitial fluid surrounding the renal tubule. As these solutes are absorbed and transported, osmotic forces pull water across the wall of the PCT and into the peritubular fluid. Although reabsorption is the primary function of the PCT, the epithelial cells can also secrete substances into the lumen.

The Loop of Henle

The PCT makes an acute bend that turns the renal tubule toward the renal medulla. This turn marks the start of the loop of Henle (Figures 26-4bView a text illustration and 26-5aView a text illustration). The loop of Henle can be divided into a descending limb and an ascending limb. Fluid in the descending limb travels toward the renal pelvis, and that in the ascending limb travels toward the renal cortex. Each limb contains a thick segment and a thin segment. (The terms thick and thin refer to the height of the epithelium, not to the diameter of the lumen.)


The thick segments have a cuboidal epithelium, whereas a thin squamous epithelium lines the thin segments (Figure 26-4View a text illustration). The thick descending limb has functions similar to those of the PCT. The thick ascending limb pumps sodium and chloride ions out of the tubular fluid. The effect of this pumping is most noticeable in the medulla, where the long ascending limbs of juxtamedullary nephrons create unusually high solute concentrations in the peritubular fluid.

The Distal Convoluted Tubule

The thick ascending limb of the loop of Henle ends where it forms a sharp angle near the vascular pole of the renal corpuscle. The distal convoluted tubule (DCT) begins there. The initial portion of the DCT passes between the afferent and efferent arterioles (Figure 26-5cView a text illustration).

In sectional view (Figure 26-4View a text illustration), the DCT differs from the PCT in that (1) the DCT has a smaller diameter, (2) the epithelial cells of the DCT lack microvilli, and (3) the boundaries between the epithelial cells in the DCT are distinct. The DCT is an important site for:

The Juxtaglomerular Apparatus
The epithelial cells of the DCT near the vascular pole of the renal corpuscle are taller than those elsewhere along the DCT, and their nuclei are clustered together. This region, detailed in Figure 26-5c
View a text illustration, is called the macula densa. The cells of the macula densa are closely associated with unusual smooth muscle fibers in the wall of the afferent arteriole. These fibers are known as juxtaglomerular cells. Together, the macula densa and juxtaglomerular cells form the juxtaglomerular apparatus (JGA). The juxtaglomerular apparatus is an endocrine structure that secretes the erythropoietin and renin, as we described in Chapter 18. Go to related content

The Collecting System

The DCT, the last segment of the nephron, opens into the collecting system. The collecting system consists of connecting tubules, collecting ducts, and papillary ducts (Figure 26-4View a text illustration). Individual connecting tubules connect each nephron to a nearby collecting duct (Figure 26-6View a text illustration). Each collecting duct receives tubular fluid from many connecting tubules. Several collecting ducts converge to empty into a larger papillary duct, which in turn empties into a minor calyx. The epithelium lining the collecting system begins with simple cuboidal cells in the connecting tubules and changes to a columnar epithelium in the collecting and papillary ducts.

In addition to transporting tubular fluid from the nephron to the renal pelvis, the collecting system adjusts its composition and determines the final osmotic concentration and volume of the urine.

The Blood Supply to the Kidneys

Your kidneys receive 20-25 percent of your total cardiac output. In normal individuals, about 1200 ml of blood flows through the kidneys each minute. That is a phenomenal amount of blood for organs with a combined weight of less than 300 g (10.5 oz)!

Each kidney receives blood from a renal artery that originates along the lateral surface of the abdominal aorta near the level of the superior mesenteric artery (Figure 21-26View a text illustration). As it enters the renal sinus, the renal artery provides blood to the segmental arteries (Figure 26-7aView a text illustration). Segmental arteries further divide into a series of interlobar arteries that radiate outward through the renal columns between the renal pyramids. The interlobar arteries supply blood to the arcuate arteries, which arch along the boundary between the cortex and medulla of the kidney. Each arcuate artery gives rise to a number of interlobular arteries, which supply parts of the adjacent renal lobe. Branching from each interlobular artery are numerous afferent arterioles (Figure 26-7bView a text illustration).


Blood reaches the vascular pole of each glomerulus through an afferent arteriole and leaves in an efferent arteriole (Figures 26-5cView a text illustration and 26-7cView a text illustration). Blood travels from the efferent arteriole to form a capillary plexus, a network of peritubular capillaries that supplies the PCT and DCT. The peritubular capillaries provide a route for the pickup or delivery of substances that are reabsorbed or secreted by these portions of the nephron.

In juxtamedullary nephrons, the efferent arterioles and peritubular capillaries are connected to a series of long, slender capillaries that accompany the loops of Henle into the medulla (Figure 26-7dView a text illustration). These capillaries, known as the vasa recta (rectus, straight), absorb and transport solutes and water reabsorbed into the medulla from tubular fluid in the loops of Henle and collecting ducts. Under normal conditions, the removal of solutes and water by the vasa recta balances the rates of solute and water reabsorption in the medulla.

From the peritubular capillaries and vasa recta, blood enters a network of venules and small veins that converge on the interlobular veins. In a mirror image of the arterial distribution, the interlobular veins deliver blood to arcuate veins, which empty into interlobar veins. The interlobar veins drain into the segmental veins, which merge to form a renal vein. Many of the blood vessels just described are visible in the corrosion cast of the kidneys shown in Figure 26-8View a text illustration.


Innervation of the Kidneys

The kidneys and ureters are innervated by renal nerves. Most of the nerve fibers involved are sympathetic postganglionic fibers from the superior mesenteric ganglion. A renal nerve enters each kidney at the hilus and follows the tributaries of the renal arteries to reach individual nephrons. The sympathetic innervation targets (1) the juxtaglomerular apparatus, (2) the smooth muscles in the walls of the afferent and efferent arterioles, and (3) mesangial cells. Known functions of sympathetic innervation include the following:


1.     What portions of the nephron are located in the renal cortex?

2.     Why don't plasma proteins pass into the capsular space under normal circumstances?

3.     Damage to what part of the nephron would interfere with the control of blood pressure?

URINE TRANSPORT, STORAGE, AND ELIMINATIONView an additional photoView an additional photo

Filtrate modification and urine production end when the fluid enters the renal pelvis. The remaining parts of the urinary system (the ureters, urinary bladder, and urethra) are responsible for the transport, storage, and elimination of urine. A pyelogram is an image of the urinary system, obtained by taking an X-ray of the kidneys after a radiopaque compound has been administered. Such an image provides an orientation to the relative sizes and positions of these organs. The sizes of the minor and major calyces, the renal pelvis, the ureters, the urinary bladder, and the proximal portion of the urethra are somewhat variable, because these regions are lined by a transitional epithelium that can tolerate cycles of distension and contraction without damage. Go to related content

We shall now examine these components of the urinary system.

The UretersView an additional photo

The ureters are a pair of muscular tubes that extend inferiorly from the kidneys for about 30 cm (12 in.) before reaching the urinary bladder. Each ureter begins at the funnel-shaped renal pelvis (Figure 26-3View a text illustration). The ureters extend inferiorly and medially, passing over the anterior surfaces of the psoas major muscles (Figures 26-1cView a text illustration and 26-2bView a text illustration). The ureters are retroperitoneal and are firmly attached to the posterior abdominal wall. The paths taken by the ureters in men and women are different due to variations in the nature, size, and position of the reproductive organs. As Figure 26-19aView a text illustration shows, in males, the base of the urinary bladder lies between the rectum and the pubic symphysis; in females, the base of the urinary bladder sits inferior to the uterus and anterior to the vagina (Figure 26-19bView a text illustration).


The ureters penetrate the posterior wall of the urinary bladder without entering the peritoneal cavity. They pass through the bladder wall at an oblique angle, and the ureteral openings are slit-like rather than rounded (Figure 26-19cView a text illustration). This shape helps prevent the backflow of urine toward the ureter and kidneys when the urinary bladder contracts.

Histology of the Ureters

The wall of each ureter consists of three layers: (1) an inner mucosa covered by a transitional epithelium, (2) a middle muscular layer made up of longitudinal and circular bands of smooth muscle, and (3) an outer connective tissue layer that is continuous with the fibrous renal capsule and peritoneum. About every 30 seconds, a peristaltic contraction begins at the renal pelvis and sweeps along the ureter, forcing urine toward the urinary bladder.

The Urinary BladderView an additional photoView an additional photo

The urinary bladder is a hollow, muscular organ that functions as a temporary storage reservoir for urine. The dimensions of the urinary bladder vary with the state of distension, but the full urinary bladder can contain about a liter of urine.

The superior surfaces of the urinary bladder are covered by a layer of peritoneum, and several peritoneal folds assist in stabilizing its position (Figure 26-19cView a text illustration). The middle umbilical ligament extends from the anterior and superior border toward the umbilicus (navel). The lateral umbilical ligaments pass along the sides of the bladder and also reach the umbilicus. These fibrous cords contain the vestiges of the two umbilical arteries, which supplied blood to the placenta during embryonic and fetal development. Go to related contentThe urinary bladder's posterior, inferior, and anterior surfaces lie outside the peritoneal cavity. In these areas, tough ligamentous bands anchor the urinary bladder to the pelvic and pubic bones.


In sectional view, the mucosa lining the urinary bladder is usually thrown into folds, or rugae, that disappear as the bladder fills. The triangular area bounded by the ureteral openings and the entrance to the urethra constitutes the trigone of the urinary bladder. The mucosa here is smooth and very thick. The trigone acts as a funnel that channels urine into the urethra when the urinary bladder contracts.

The urethral entrance lies at the apex of the trigone, at the most inferior point in the urinary bladder. The region surrounding the urethral opening, known as the neck of the urinary bladder, contains a muscular internal urethral sphincter, or sphincter vesicae. The smooth muscle fibers of the internal urethral sphincter provide involuntary control over the discharge of urine from the urinary bladder. The urinary bladder is innervated by postganglionic fibers from ganglia in the hypogastric plexus and by parasympathetic fibers from intramural ganglia that are controlled by branches of the pelvic nerves.

Histology of the Urinary Bladder

The wall of the urinary bladder contains mucosa, submucosa, and muscularis layers (Figure 26-20View a text illustration).The muscularis layer consists of inner and outer longitudinal smooth muscle layers, with a circular layer sandwiched between. Collectively, these layers form the powerful detrusor muscle of the urinary bladder. Contraction of this muscle compresses the urinary bladder and expels its contents into the urethra.

The UrethraView an additional photo

The urethra extends from the neck of the urinary bladder (Figure 26-19cView a text illustration) to the exterior. The female and male urethrae differ in length and in function. In females, the urethra is very short, extending 3-5 cm (1-2 in.) from the bladder to the vestibule (Figure 26-19bView a text illustration). The external urethral opening, or external urethral meatus, is situated near the anterior wall of the vagina.

In males, the urethra extends from the neck of the urinary bladder to the tip of the penis, a distance that may be 18-20 cm (7-8 in.). The male urethra can be subdivided into three portions (Figure 26-19aView a text illustration, cView a text illustration): (1) the prostatic urethra, (2) the membranous urethra, and (3) the penile urethra.

The prostatic urethra passes through the center of the prostate gland (Figure 26-19cView a text illustration). The membranous urethra includes the short segment that penetrates the urogenital diaphragm, the muscular floor of the pelvic cavity. The penile urethra extends from the distal border of the urogenital diaphragm to the external urethral meatus at the tip of the penis (Figure 26-19aView a text illustration). We shall consider the functional differences among these regions in Chapter 28.

In both genders, as the urethra passes through the urogenital diaphragm, a circular band of skeletal muscle forms the external urethral sphincter. This muscular band acts as a valve. The external urethral sphincter is under voluntary control, via the perineal branch of the pudendal nerve. This sphincter has a resting muscle tone and must be voluntarily relaxed to permit micturition.

Histology of the Urethra

The urethral lining consists of a stratified epithelium that varies from transitional at the neck of the urinary bladder, through stratified columnar at the midpoint, to stratified squamous near the external urethral meatus. The lamina propria is thick and elastic, and the mucous membrane is thrown into longitudinal folds. Mucin-secreting cells are located in the epithelial pockets. In males, the epithelial mucous glands may form tubules that extend into the lamina propria. Connective tissues of the lamina propria anchor the urethra to surrounding structures. In females, the lamina propria contains an extensive network of veins, and the entire complex is surrounded by concentric layers of smooth muscle.

The URINARY BLADDER lies in cavity of lesser pelvis behind pubic symphysis. It has an apex, body and fundus, which is directed down and posterior. Inferior part forms а neck, which continues into urethra. Empty urinary bladder lies extraperitoneally. Full bladder covered by peritoneum anteriorly, laterally and posteriorly - mesoperitoneal position. Fundus of the bladder in male adjoins from below to prostate gland, seminal vesicles and ampoule of ductus deferens, and behind - to ampoule of rectum. In female urinary bladder behind adjoins to vagina and uterus.

The urinary bladder is a musculomembranous sac which acts as a reservoir for the urine; and as its size, position, and relations vary according to the amount of fluid it contains, it is necessary to study it as it appears (a) when empty, and (b) when distended.) In both conditions the position of the bladder varies with the condition of the rectum, being pushed upward and forward when the rectum is distended.

 The Empty Bladder.—When hardened in situ, the empty bladder has the form of a flattened tetrahedron, with its vertex tilted forward. It presents a fundus, a vertex, a superior and an inferior surface. The fundus is triangular in shape, and is directed downward and backward toward the rectum, from which it is separated by the rectovesical fascia, the vesiculæ seminales, and the terminal portions of the ductus deferentes. The vertex is directed forward toward the upper part of the symphysis pubis, and from it the middle umbilical ligament is continued upward on the back of the anterior abdominal wall to the umbilicus. The peritoneum is carried by it from the vertex of the bladder on to the abdominal wall to form the middle umbilical fold. The superior surface is triangular, bounded on either side by a lateral border which separates it from the inferior surface, and behind by a posterior border, represented by a line joining the two ureters, which intervenes between it and the fundus. The lateral borders extend from the ureters to the vertex, and from them the peritoneum is carried to the walls of the pelvis. On either side of the bladder the peritoneum shows a depression, named the paravesical fossa. The superior surface is directed upward, is covered by peritoneum, and is in relation with the sigmoid colon and some of the coils of the small intestine. When the bladder is empty and firmly contracted, this surface is convex and the lateral and posterior borders are rounded; whereas if the bladder be relaxed it is concave, and the interior of the viscus, as seen in a median sagittal section, presents the appearance of a V-shaped slit with a shorter posterior and a longer anterior limb—the apex of the V corresponding with the internal orifice of the urethra. The inferior surface is directed downward and is uncovered by peritoneum. It may be divided into a posterior or prostatic area and two infero-lateral surfaces. The prostatic area is somewhat triangular: it rests upon and is in direct continuity with the base of the prostate; and from it the urethra emerges. The infero-lateral portions of the inferior surface are directed downward and lateralward: in front, they are separated from the symphysis pubis by a mass of fatty tissue which is named the retropubic pad; behind, they are in contact with the fascia which covers the Levatores ani and Obturatores interni.


Описание: image1135


Median sagitta section of male pelvis.



1, corpus cavernosum 2, corpus spongiosum (bulb of the penis) 3, ramus ischium 4, ischiocavernosus m. 5, anal canal 6, sphincter ani externus m. 7, gluteus maximus m.


  When the bladder is empty it is placed entirely within the pelvis, below the level of the obliterated hypogastric arteries, and below the level of those portions of the ductus deferentes which are in contact with the lateral wall of the pelvis; after they cross the ureters the ductus deferentes come into contact with the fundus of the bladder. As the viscus fills, its fundus, being more or less fixed, is only slightly depressed; while its superior surface gradually rises into the abdominal cavity, carrying with it its peritoneal covering, and at the same time rounding off the posterior and lateral borders.

               When the bladder is moderately full it contains about 0.5 liter and assumes an oval form; the long diameter of the oval measures about 12 cm. and is directed upward and forward. In this condition it presents a postero-superior, an antero-inferior, and two lateral surfaces, a fundus and a summit. The postero-superior surface is directed upward and backward, and is covered by peritoneum: behind, it is separated from the rectum by the rectovesical excavation, while its anterior part is in contact with the coils of the small intestine. The antero-inferior surface is devoid of peritoneum, and rests, below, against the pubic bones, above which it is in contact with the back of the anterior abdominal wall. The lower parts of the lateral surfaces are destitute of peritoneum, and are in contact with the lateral walls of the pelvis. The line of peritoneal reflection from the lateral surface is raised to the level of the obliterated hypogastric artery. The fundus undergoes little alteration in position, being only slightly lowered. It exhibits, however, a narrow triangular area, which is separated from the rectum merely by the rectovesical fascia. This area is bounded below by the prostate, above by the rectovesical fold of peritoneum, and laterally by the ductus deferentes. The ductus deferentes frequently come in contact with each other above the prostate, and under such circumstances the lower part of the triangular area is obliterated. The line of reflection of the peritoneum from the rectum to the bladder appears to undergo little or no change when the latter is distended; it is situated about 10 cm. from the anus. The summit is directed upward and forward above the point of attachment of the middle umbilical ligament, and hence the peritoneum which follows the ligament, forms a pouch of varying depth between the summit of the bladder, and the anterior abdominal wall.


Описание: image1136


Male pelvic organs seen from right side. Bladder and rectum distended; relations of peritoneum to the bladder and rectum shown in blue. The arrow points to the rectovesical pouch. 


The Bladder in the Child—In the newborn child the internal urethral orifice is at the level of the upper border of the symphysis pubis; the bladder therefore lies relatively at a much higher level in the infant than in the adult. Its anterior surface “is in contact with about the lower two-thirds of that part of the abdominal wall which lies between the symphysis pubis and the umbilicus”. Its fundus is clothed with peritoneum as far as the level of the internal orifice of the urethra. Although the bladder of the infant is usually described as an abdominal organ, Symington has pointed out that only about one-half of it lies above the plane of the superior aperture of the pelvis. Disse maintains that the internal urethral orifice sinks rapidly during the first years, and then more slowly until the ninth year, after which it remains sta when it again slowly descends and reaches its adult position.


Описание: image1137

Sagittal section through the pelvis of a newly born male child.





1, rectus abdominis m. 2, bladder 3, pubis 4, ischium 5, testis 6, corpus cavernosum



1, rectus abdominis m. 2, symphysis pubis 3, corpus cavernosum 4, corpus spongiosum 5, prostate 6, bladder 7,seminal vesicle 8, rectum 9, sacrum

Описание: image1138

Sagittal section through the pelvis of a newly born female child.



The Female Bladder—In the female, the bladder is in relation behind with the uterus and the upper part of the vagina. It is separated from the anterior surface of the body of the uterus by the vesicouterine excavation, but below the level of this excavation it is connected to the front of the cervix uteri and the upper part of the anterior wall of the vagina by areolar tissue. When the bladder is empty the uterus rests upon its superior surface. The female bladder is said by some to be more capacious than that of the male, but probably the opposite is the case.


Описание: image1139


Median sagittal section of female pelvis.

 Ligaments.—The bladder is connected to the pelvic wall by the fascia endopelvina. In front this fascial attachment is strengthened by a few muscular fibers, the Pubovesicales, which extend from the back of the pubic bones to the front of the bladder; behind, other muscular fibers run from the fundus of the bladder to the sides of the rectum, in the sacrogenital folds, and constitute the Rectovesicales.

  The vertex of the bladder is joined to the umbilicus by the remains of the urachus which forms the middle umbilical ligament, a fibromuscular cord, broad at its attachment to the bladder but narrowing as it ascends.

  From the superior surface of the bladder the peritoneum is carried off in a series of folds which are sometimes termed the false ligaments of the bladder. Anteriorly there are three folds: the middle umbilical fold on the middle umbilical ligament, and two lateral umbilical folds on the obliterated hypogastric arteries. The reflections of the peritoneum on to the side walls of the pelvis form the lateral false ligaments, while the sacrogenital folds constitute posterior false ligaments.

 Interior of the Bladder—The mucous membrane lining the bladder is, over the greater part of the viscus, loosely attached to the muscular coat, and appears wrinkled or folded when the bladder is contracted: in the distended condition of the bladder the folds are effaced. Over a small triangular area, termed the trigonum vesicæ, immediately above and behind the internal orifice of the urethra, the mucous membrane is firmly bound to the muscular coat, and is always smooth. The anterior angle of the trigonum vesicæ is formed by the internal orifice of the urethra: its postero-lateral angles by the orifices of the ureters. Stretching behind the latter openings is a slightly curved ridge, the torus uretericus, forming the base of the trigone and produced by an underlying bundle of non-striped muscular fibers. The lateral parts of this ridge extend beyond the openings of the ureters, and are named the plicæ uretericæ; they are produced by the terminal portions of the ureters as they traverse obliquely the bladder wall. When the bladder is illuminated the torus uretericus appears as a pale band and forms an important guide during the operation of introducing a catheter into the ureter.


Описание: image1140

The interior of bladder.


  The orifices of the ureters are placed at the postero-lateral angles of the trigonum vesicæ, and are usually slit-like in form. In the contracted bladder they are about 2.5 cm. apart and about the same distance from the internal urethral orifice; in the distended viscus these measurements may be increased to about 5 cm.

  The internal urethral orifice is placed at the apex of the trigonum vesicæ, in the most dependent part of the bladder, and is usually somewhat crescentic in form; the mucous membrane immediately behind it presents a slight elevation, the uvula vesicæ, caused by the middle lobe of the prostate.


Structure—The bladder is composed of the four coats: serous, muscular, submucous, and mucous coats.

  The serous coat (tunica serosa) is a partial one, and is derived from the peritoneum. It invests the superior surface and the upper parts of the lateral surfaces, and is reflected from these on to the abdominal and pelvic walls.

  The muscular coat (tunica muscularis) consists of three layers of unstriped muscular fibers: an external layer, composed of fibers having for the most part a longitudinal arrangement; a middle layer, in which the fibers are arranged, more or less, in a circular manner; and an internal layer, in which the fibers have a general longitudinal arrangement.

  The fibers of the external layer arise from the posterior surface of the body of the pubis in both sexes (musculi pubovesicales), and in the male from the adjacent part of the prostate and its capsule. They pass, in a more or less longitudinal manner, up the inferior surface of the bladder, over its vertex, and then descend along its fundus to become attached to the prostate in the male, and to the front of the vagina in the female. At the sides of the bladder the fibers are arranged obliquely and intersect one another. This layer has been named the Detrusor urinæ muscle.

  The fibers of the middle circular layer are very thinly and irregularly scattered on the body of the organ, and, although to some extent placed transversely to the long axis of the bladder, are for the most part arranged obliquely. Toward the lower part of the bladder, around the internal urethral orifice, they are disposed in a thick circular layer, forming the Sphincter vesicæ, which is continuous with the muscular fibers of the prostate.

  The internal longitudinal layer is thin, and its fasciculi have a reticular arrangement, but with a tendency to assume for the most part a longitudinal direction. Two bands of oblique fibers, originating behind the orifices of the ureters, converge to the back part of the prostate, and are inserted by means of a fibrous process, into the middle lobe of that organ. They are the muscles of the ureters, described by Sir C. Bell, who supposed that during the contraction of the bladder they serve to retain the oblique direction of the ureters, and so prevent the reflux of the urine into them.

  The submucous coat (tela submucosa) consists of a layer of areolar tissue, connecting together the muscular and mucous coats, and intimately united to the latter.


Описание: image1141

Vertical section of bladder wall.






  The mucous coat (tunica mucosa) is thin, smooth, and of a pale rose color. It is continuous above through the ureters with the lining membrane of the renal tubules, and below with that of the urethra. The loose texture of the submucous layer allows the mucous coat to be thrown into folds or rugæ when the bladder is empty. Over the trigonum vesicæ the mucous membrane is closely attached to the muscular coat, and is not thrown into folds, but is smooth and flat. The epithelium covering it is of the transitional variety, consisting of a superficial layer of polyhedral flattened cells, each with one, two, or three nuclei; beneath these is a stratum of large club-shaped cells, with their narrow extremities directed downward and wedged in between smaller spindle-shaped cells, containing oval nuclei. The epithelium varies according as the bladder is distended or contracted. In the former condition the superficial cells are flattened and those of the other layers are shortened; in the latter they present the appearance described above. There are no true glands in the mucous membrane of the bladder, though certain mucous follicles which exist, especially near the neck of the bladder, have been regarded as such.


Vessels and Nerves.—The arteries supplying the bladder are the superior, middle, and inferior vesical, derived from the anterior trunk of the hypogastric. The obturator and inferior gluteal arteries also supply small visceral branches to the bladder, and in the female additional branches are derived from the uterine and vaginal arteries.

  The veins form a complicated plexus on the inferior surface, and fundus near the prostate, and end in the hypogastric veins.

    The nerves of the bladder are (1) fine medullated fibers from the third and fourth sacral nerves, and (2) non-medullated fibers from the hypogastric plexus. They are connected with ganglia in the outer and submucous coats and are finally distributed, all as non-medullated fibers, to the muscular layer and epithelial lining of the viscus.


Abnormalities.—A defect of development, in which the bladder is implicated, is known under the name of extroversion of the bladder. In this condition the lower part of the abdominal wall and the anterior wall of the bladder are wanting, so that the fundus of the bladder presents on the abdominal surface, and is pushed forward by the pressure of the viscera within the abdomen, forming a red vascular tumor on which the openings of the ureters are visible. The penis, except the glans, is rudimentary and is cleft on its dorsal surface, exposing the floor of the urethra, a condition known as epispadias. The pelvic bones are also arrested in development.


Wall of urinary bladder is formed by mucous membrane and well developed submucous stratum, thanks it mucous membrane forms the numerous folds. Between orifices of ureters and internal urethral ostium submucous base absent, so there are no folds here. This place called as triangle of bladder. It is limited above interureteric fold of mucous membrane. Middle membrane of urinary bladder is a muscular membrane, where muscles are arranged in three layers: internal and external longitudinal and middle - circular. The muscular layers form in area of the body muscle-detrussor of bladder, and a circular layer most developed in area of internal urethral ostium, forms an internal urethral muscle-sphincter (involuntary).

Two Kidneys are pair parenchymatic organs, which positioned in abdominal cavity behind peritoneum (retroperitoneal position) in right and left lumbar regions. Kidney is projected on front abdominal wall in epigastric, lateral and umbilical regions. Right kidney extends from Th 12 vertebra till L 3 lumbar vertebra, left one - from Th 11 vertebra till L 2 lumbar vertebra.

Описание: image1121

Posterior abdominal wall, after removal of the peritoneum, showing kidneys, suprarenal capsules, and great vessels.


Posterior surface of each kidney in superior part adjoins to diaphragm, and in middle and inferior - to muscular bed, which is formed by muscle: psoas major, quadratus lumborum and transverse abdominis. To anterior surface of left kidney adrenal gland adjoins above, to superolateral part - spleen, to middle portion - stomach and pancreas, inferiorly - medially is loops of small intestine, and superolaterally - colon. To anterior surface of right kidney suprarenal gland adjoins above, to middle part - liver, to medial margin - duodenum, to inferiomedial - loops of small intestine and to inferiolateral - large intestine.

Описание: image1127

Vertical section of kidney.


Each kidney has superior extremity and inferior extremity, anterior surface and posterior surface, medial margin (concave) and lateral margin (convex). On medial margin are situated the renal hilus, where artery, nerves enter, and vein, lymphatic and renal pelvis exit. The renal hilus gets into kidneys, forming a renal sinus, filled by adipose tissue, also major renal calices and minor renal calices and initial part of renal pelvis are present there.




To parenchyma of the kidney a fibrous capsule adjoins. Outside from last a fatty capsule is situated, which noticeable better near posterior surface of kidney. More outer from adipose capsule renal fascia disposed, which consists of anterior sheet and posterior sheet. They fused together by superior edges and laterally. From renal fascia stratums of connective tissue draw to fibrous capsule kidney, which fix a kidney. Peritoneum adjoins to anterior sheet of renal fascia. Kidneys are fixed by abdominal pressure, renal fascia, muscular bed, renal vessels and nerves, which form a renal leg.

Описание: image1125

Sagittal section through posterior abdominal wall, showing the relations of the capsule of the kidney.


Renal parenchyma consists of cortex (superficially) and medulla (deep location). In medulla they distinguish 7-10 renal pyramids, each from which has a base of renal pyramids and a top (apex). Last terminates in renal papilla where cribriform area disposed. The stratums of cortical matter, which form the renal columns, lie between pyramids. Cortical matter consists of convoluted part, between which the stratums of medulla are contained. They have a name medullar rays (radiata part). Each renal pyramid forms renal lobe, and one convoluted part and one radita part form renal lobule in cortex. From top of renal pyramid urine gets into minor renal calices (7-8 in number), from them urine flow into 2-3 major calices, then it moves into renal pelvis, which continues into ureter.

BLOOD SUPPLYING of KIDNEYS. Kidney supplied by renal artery, which ramifies in hilus area into anterior branch and posterior branch. Last divide by segmental arteries, and segmental branches - into interlobar arteries, which ramify on border of cortex and medulla into arcuate arteries. Arcuate arteries give off the radial cortical (interlobular) arteries in cortical matter. They give beginning for numerous of afferent vasa, which disintegrate into arterial capillaries and form a renal glomerulus. From renal glomerulus moves away efferent vasa, which disintegrates into secondary arterial capillaries, that enshrouds the tubules of nephron. Such system of blood supplying, when arterial vessels have double disintegration into cappillaries called as renal miracle arterial rete. Venous capillaries form in cortical matter stellate venullae, which fall into arcuate veins. Arcuate veins continue into interlobar veins, last form a renal vein, which empties in inferior vena cava.

Описание: image1129

FORMINg and transportation of URINE within the KIDNEY. Primary urine arises by filtration blood plasma in nephron capsule, which envelops each renal glomerulus. Capsule of renal glomerulus together with glomerulus form a renal corpuscle, which is situated in convoluted part of cortex. Proximal canalicule of nephron passes from renal corpuscle, which continues into nephron loop (ansa of Henle). Last continues into distal part of nephron canalicule which falling into collecting duct. All of above counted urinary tubules braid by thick net of secondary arterial capillaries and by reabsorbtion secondary urine here is formed. The elements, where urine is formed, compose function and structural kidney unit – nephron:

Описание: image1128

After nephron urine streams into straight colligens (collecting) tubules, which terminate by pappillar foramens on top of renal pyramid. Last open on cribriform area into minor renal calices. From small renal calices urine flows into major renal calices, which join together and form a renal pelvis, last continues into ureter.


The URETERS are pair organ length 25-З0 cm, which lies retroperitoneally. Ureter has abdominal part, pelvic part and intramural part. Last lies in the wall of urinary bladder and opens on its fundus by foramen. Ureters wall consists of external membrane, muscular membrane and mucous membrane. Muscular membrane has external circular and internal longitudinal layers.

Ureter has follow narrow places:

• at transition of renal pelvis into ureter;

• at transition of abdominal part into pelvic part;

• at transition of ureters into urinary bladder.

The Micturition Reflex and Urination

Urine reaches the urinary bladder by the peristaltic contractions of the ureters. The process of urination is coordinated by the micturition reflex. Components of this reflex are diagrammed in Figure 26-21View a text illustration.

Stretch receptors in the wall of the urinary bladder are stimulated as the bladder fills with urine. Afferent fibers in the pelvic nerves carry the impulses generated to the sacral spinal cord. Their increased level of activity (1) facilitates parasympathetic motor neurons in the sacral spinal cord and (2) stimulates interneurons that relay sensations to the thalamus and on to the cerebral cortex. As a result, you become consciously aware of the fluid pressure in your urinary bladder.

The urge to urinate generally appears when the bladder contains about 200 ml of urine. The micturition reflex begins to function when the stretch receptors have provided adequate stimulation to parasympathetic preganglionic motor neurons. Action potentials carried by efferent fibers within the pelvic nerves then stimulate ganglionic neurons in the wall of the urinary bladder. These neurons in turn stimulate sustained contraction of the detrusor muscle.

This contraction elevates fluid pressures in the urinary bladder, but urine ejection does not occur unless both the internal and external urethral sphincters are relaxed. Relaxation of the external urethral sphincter occurs under voluntary control. When the external urethral sphincter relaxes, so does the internal sphincter. If the external urethral sphincter does not relax, the internal sphincter remains closed and the urinary bladder gradually relaxes.

A further increase in bladder volume begins the cycle again, usually within an hour. Each increase in urinary volume leads to an increase in stretch receptor stimulation that makes the sensation more acute. Once the volume of the urinary bladder exceeds 500 ml, the micturition reflex may generate enough pressure to force open the internal urethral sphincter. This opening leads to a reflexive relaxation of the external sphincter, and urination occurs despite voluntary opposition or potential inconvenience. At the end of a normal micturition, less than 10 ml of urine remains in the bladder.

Infants lack voluntary control over urination, because the necessary corticospinal connections have yet to be established. Toilet training before age 2 typically involves training the parent to anticipate the timing of the reflex rather than training the child to exert conscious control.